Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Navigating to the Moon along low-energy transfers

Vetrisano, M. and Van der Weg, W. and Vasile, M. (2012) Navigating to the Moon along low-energy transfers. Celestial Mechanics and Dynamical Astronomy, 114 (1-2). pp. 25-53. ISSN 0923-2958

PDF (Navigating to the Moon Along Low-Energy Transfers)
Celestial_Mech_Vetrisano_et_al_v3m.pdf - Preprint

Download (2MB) | Preview


This paper presents a navigation strategy to fly to the Moon along a Weak Stability Boundary transfer trajectory. A particular strategy is devised to ensure capture into an uncontrolled relatively stable orbit at the Moon. Both uncertainty in the orbit determination process and in the control of the thrust vector are included in the navigation analysis. The orbit determination process is based on the definition of an optimal filtering technique that is able to meet accuracy requirements at an acceptable computational cost. Three sequential filtering techniques are analysed: an extended Kalman filter, an unscented Kalman filter and a Kalman filter based on high order expansions. The analysis shows that only the unscented Kalman filter meets the accuracy requirements at an acceptable computational cost. This paper demonstrates lunar weak capture for all trajectories within a capture corridor defined by all the trajectories in the neighbourhood of the nominal one, in state space. A minimum Delta v strategy is presented to extend the lifetime of the spacecraft around the Moon. The orbit determination and navigation strategies are applied to the case of the European Student Moon Orbiter.