
Abstraction and Invariance for Algebraically Indexed Types

Robert Atkey Patricia Johann
University of Strathclyde

{Robert.Atkey,Patricia.Johann}@strath.ac.uk

Andrew Kennedy
Microsoft Research Cambridge

akenn@microsoft.com

Abstract
Reynolds’ relational parametricity provides a powerful way to rea-
son about programs in terms of invariance under changes of data
representation. A dazzling array of applications of Reynolds’ the-
ory exists, exploiting invariance to yield “free theorems”, non-
inhabitation results, and encodings of algebraic datatypes. Outside
computer science, invariance is a common theme running through
many areas of mathematics and physics. For example, the area of
a triangle is unaltered by rotation or flipping. If we scale a trian-
gle, then we scale its area, maintaining an invariant relationship be-
tween the two. The transformations under which properties are in-
variant are often organised into groups, with the algebraic structure
reflecting the composability and invertibility of transformations.

In this paper, we investigate programming languages whose
types are indexed by algebraic structures such as groups of ge-
ometric transformations. Other examples include types indexed
by principals–for information flow security–and types indexed by
distances–for analysis of analytic uniform continuity properties.
Following Reynolds, we prove a general Abstraction Theorem that
covers all these instances. Consequences of our Abstraction Theo-
rem include free theorems expressing invariance properties of pro-
grams, type isomorphisms based on invariance properties, and non-
definability results indicating when certain algebraically indexed
types are uninhabited or only inhabited by trivial programs. We
have fully formalised our framework and most examples in Coq.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (functional) programming; D.2.4 [Software
Engineering]: Software/Program Verification; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data types
and structures

General Terms Languages, Theory, Types

Keywords parametricity, units of measure, dimensional analy-
sis, invariance, computational geometry, information flow, metric
types, uniform continuity

1. Introduction
The best way we know of describing the semantics of parametric
polymorphism is relational parametricity, whose central result is
Reynolds’ Abstraction Theorem [18]. Its striking consequences in-
clude the well-known “free theorems” for polymorphic types [22],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $15.00

non-inhabitation results, and precise correspondences between Sys-
tem F encodings and algebraic datatypes [16], abstract data types,
and, most recently, higher-order encodings of binder syntax [2].

Relational parametricity is in essence a principle of invariance:
the behaviour of polymorphic code is invariant under changes
of data representation. For example, the type ∀α.list〈α〉 →
list〈α〉 tells us that any transformation applied to elements of
the input list will be reflected by the same transformation applied
to elements of the result. Invariance results also abound in mathe-
matics and physics. The area of a triangle is invariant with respect
to isometries of the Euclidean plane; the determinant of a matrix is
invariant under changes of basis; and Newton’s laws are the same
in all inertial frames. Typically, the transformations under which
invariants are preserved have interesting structure: for example,
translations in the Euclidean plane form an abelian group.

Inspired by this connection, we study type systems that cap-
ture rich invariants in types indexed by attributes with algebraic
structure. For example, in computational geometry, points in the
plane can be indexed by attributes representing affine transforma-
tions; in information-flow security, computations can be indexed
by principals; in differential privacy, types can be indexed by ‘dis-
tance’. Types that are polymorphic over such indices induce invari-
ance properties and abstraction barriers beyond those introduced
by their unindexed versions, as we shall illustrate. This generalises
previous work by the third author on types parameterized by units
of measure, whose invariance properties relate to changes of units,
or scaling [13].

Invariance To illustrate type-induced invariance properties, con-
sider two-dimensional geometry. In a conventional type system, a
function areaTri that computes the area of a triangle might be as-
signed the type: vec × vec × vec → real. But in our proposed
system we can assign it the following more expressive polymorphic
type:

areaTri : ∀t:T2.vec〈t〉 × vec〈t〉 × vec〈t〉 → real

This type expresses the fact that if each of the arguments to areaTri
is translated by the same vector, then the result remains the same,
that is, it is invariant under translation. Formally, for any vector ~t,

areaTri (~t+ ~v1,~t+ ~v2,~t+ ~v3) = areaTri (~v1, ~v2, ~v3)

Transformations typically compose in various ways, and the
compositions satisfy algebraic laws. For example, we can assign
a function that computes the area of a circle given its radius the
following polymorphic type:

areaCircle : ∀s:GL1.real〈s〉 → real〈s · s〉

This captures the fact that the area of a circle varies as the square of
its radius, i.e., areaCircle(kr) = k2 ·areaCircle(r) for any k 6= 0
(the ‘sorts’ T2 and GL1 will be explained later). Here, s can be
interpreted as the units of measure of the argument to areaCircle,
and ‘·’ composes units using the product. We can also add an

inverse operation and identity unit of measure 1, and then impose
the algebraic laws of abelian groups. This permits identification of,
for example, real〈s ·s−1〉 with the type real〈1〉 of dimensionless
constants.

Abstraction In his original paper on parametricity, Reynolds as-
serted that type structure is a syntactic discipline for enforcing lev-
els of abstraction. We see something analogous here: if all primitive
operations are given types that reflect their behaviour under trans-
lation, then there is no way to ‘break’ this property. For example,
there is no way that areaTri can depend on the actual coordinates
of its inputs. Furthermore, the distinction between points and vec-
tors that is often enforced through abstract data types [7] is cap-
tured here by indices instead. For example, the operation that takes
two points and computes their vector difference can be assigned the
type ∀t:T2.vec〈t〉×vec〈t〉 → vec〈0〉, reflecting the invariance of
the result (a pure vector) under translations of the point arguments.
As a result through types alone we can, in essence, derive so-called
coordinate-free geometry [15].

The invariance properties discussed above can be seen as “free
theorems” [22], but the abstraction afforded by polymorphic in-
dexed types can also induce interesting type isomorphisms. The
type of areaCircle above is in fact isomorphic to real〈1〉. A mo-
ment’s thought reveals why: what possible unary functions can be
constructed whose outputs scale as the square of the scaling of their
inputs? Answer: just those functions of the form λx.kx2 for some
constant k. In this case, of course, we expect that k = π.

Relational parametricity To derive such invariance and abstrac-
tion properties of types, we adopt the techniques of relational para-
metricity. Over an underlying index-erasure semantics we construct
binary relations parameterised by an environment ρ that describes
how values of primitive type are related according to their indices.
For example, values v and w of type real〈s〉 are related when v
“scales to”w according to an interpretation of s (i.e.,w = ρ(s) ·v).
Values of polymorphic type are related exactly when they are re-
lated for all possible interpretations of the quantified variable. For
example, values v and w of type ∀t:T2.vec〈t〉 → vec〈t〉 are re-
lated when they are related at type vec〈t〉 → vec〈t〉 for all trans-
lations ~t ∈ T2 associated with t.

As it happens, the relational interpretations given above are
functional, relating one value uniquely to another. Other ap-
plications make use of primitive relations that are not simple
functions. For example, in a type system in which the index in
real〈s〉 is interpreted not as a unit of measure, but as a mea-
sure of closeness, two values x and y of this type are related if
|x− y| < ρ(s) for a positive real number ρ(s). Rather beautifully,
the standard notion of uniform continuity can then be expressed as
∀ε:R>0. ∃δ:R>0. real〈δ〉 → real〈ε〉.
Motivations Our motivations for studying algebraically indexed
types are threefold. First, we believe that, as with units of mea-
sure [14], practical programming language extensions will follow.
For example, in computational geometry and graphics, attributes on
points, vectors, and other geometric types could be used to prevent
the mixing of different coordinate systems, or ‘frames’. Second,
type-based static analyses can be based on indexed types, for ex-
ample, in effect systems [4], and, more speculatively, in continuity
analysis [8]. Finally, we believe that expressing algebraic invari-
ants through types has the potential to offer slick proof techniques
for mechanized mathematics. Harrison has applied the invariance
properties of geometric primitives to create elegant proofs in ge-
ometry, based on ‘without loss of generality’ principles [10]. The
invariance properties are expressed and propagated using ad-hoc
tactics; our types offer a more principled means of achieving the
same end, and the ‘wlog’ principle itself is expressed through type
isomorphisms.

Algebraic
Theory +

Index-Erasure
Interpretation +

Relational
Interpretation

Abstraction Theorem (Theorem 1)

Free
Theorems

Type
Isomorphisms Non-definability

Figure 1. Summary of the Paper

We follow the mantra semantics first, syntax later in studying
types with algebraic structure. We have not yet built a practical pro-
gramming language that supports algebraically indexed types; nor
have we designed type checking, type inference, or static analysis
algorithms. But when we do so, the semantics will guide us. The
fact that zero is polymorphic in units of measure (it can be given
type ∀u.real〈u〉) whereas other constants are dimensionless (hav-
ing type real〈1〉) is justified by the invariance properties induced
by the types: zero is invariant under scaling, other constants are not.
For less trivial constants and operations, the appropriate types are
not so apparent, as we shall see, but invariance properties expressed
by the semantics guide us in assigning appropriate types. Semantics
does not lie!

1.1 Contributions
This paper makes the following specific contributions:

• We present a collection of compelling examples of algebraically
indexed types, including a novel type system for geometry, a
refined type system for information flow based on logic, and a
simple type system with distance-indexed types.
• We formulate a type system that can either be used as a pro-

gramming language in its own right, or as the target of type-
based analyses. The type system consists of the usual type con-
structors together with a collection of indexed primitive types,
universal and existential quantification over the indices, and a
multi-sorted equational theory for indices.
• We describe a relational semantics for the type system and

prove an analogue of Reynolds’ Abstraction Theorem, for a
given model of index sorts and relational interpretation of prim-
itive types. We prove that the semantics soundly approximates
contextual equivalence.
• For each of our main examples we deduce free theorems that are

consequences of our Abstraction Theorem, prove specific non-
definability results, and derive interesting type isomorphisms.
For a large class of first-order types we give a general method
for constructing suitable models to prove non-definability re-
sults. Figure 1 illustrates the central position of our analogue of
Reynolds’ Abstraction Theorem (Theorem 1) in these results.

We improve on the earlier semantics of units of measure [13] in a
number of ways. By extending the language of units with an ‘ab-
solute value’ operation, we can give more precise types and obtain
more general invariance properties. The relational interpretation for
units is both simpler and more flexible, and we derive slicker proofs
of non-definability, and new results. Our notion of type isomor-
phism is stronger than before, being based on contextual equiva-
lence.

We have fully formalised our framework and most examples in
Coq, using strongly-typed term representations throughout [3]. The
formalisation is available from
https://github.com/bobatkey/algebraically-indexed-types

1.2 Structure of paper
Our paper is structured as follows. In Section 2 we present an ex-
tended case study of two-dimensional geometry, with semi-formal
description of types and results. In Section 3 we describe fully
formally a general framework for algebraically-indexed types, and
prove the Abstraction Theorem and soundness for semantic equiv-
alence. Section 4 presents a number of applications of the theory
to 2-d geometry, including free theorems, type isomorphisms and
non-definability. Section 5 develops a more general technique for
proving non-definability results. Section 6 presents the application
of algebraically indexed types to information flow security, and
Section 7 applies it to types indexed by distances. Finally, Section 8
discusses related work and future plans.

2. Geometry via Algebraically Indexed Types
We motivate our investigation of algebraically indexed types and
their relational interpretations by developing a novel type system
for programs that manipulate two-dimensional geometric data. Ge-
ometry is rich with operations that are invariant under transforma-
tion: affine operations are invariant under change of origin (Sec-
tion 2.3), vector space operations are invariant under change of ba-
sis, and dot product is invariant under orthogonal changes of basis
(Section 2.4). On the other hand, some geometric operations are in-
terestingly variant under transformation. For example, cross prod-
ucts vary with scalings of the plane (Section 2.5). We incorporate
(in)variance information about geometric primitives into type sys-
tems via algebraically indexed types.

2.1 Origin Invariance and Representation Independence
The basic data structure used in programs that manipulate geomet-
ric data is the n-tuple of numbers. In the 2-dimensional case, tuples
~v = (x, y) serve double duty, representing both points—offsets
from some origin—and vectors—offsets in their own right. Despite
their common representation, points and vectors are very different,
and distinguishing between them is the key feature of affine geom-
etry (see, for example, Chapter 2 of Gallier’s book [9]). Neverthe-
less, computational geometry libraries traditionally either leave it
to the programmer to maintain the distinction between points and
vectors, or else use different abstract types for points and vectors
to enforce it. In this paper we investigate a more sophisticated ap-
proach based on types indexed by change of origin transformations.

This approach regards the difference between points and vec-
tors as a change of data representation. For example, if (0, 0) and
(10, 20) are two origins, then the tuple (1, 1) with respect to (0, 0)
and the tuple (11, 21) with respect to (10, 20) represent the same
point because they have the same displacement from these two
origins, respectively. This suggests that programs that manipulate
points should be invariant with respect to changes of origin. Pro-
grams that manipulate vectors, on the other hand, should not be
invariant under change of origin. Different vectors represent differ-
ent offsets, and the vector (0, 0) always represents the zero offset.

Invariance under change of representation immediately recalls
Reynolds’ fable about two professors teaching the theory of com-
plex numbers [18]. One professor represents complex numbers us-
ing rectangular coordinates (x+iy), while the other represents them
using polar coordinates (α cos θ+ iα sin θ). Happily, after learning
the basic operations on complex numbers in the two representa-
tions, the two classes can interact because the theory of complex
numbers is invariant under the choice of representation. Reynolds

formalises the idea of invariance under changes of representation as
preservation of relations. For example, if a binary relationR relates
the rectangular and polar representations of complex numbers, then
a program that manipulates complex numbers at a level of abstrac-
tion above their specific representation should preserve R.

Reynolds’ relational approach can be applied in the geometric
setting to show how quantifying over all changes of origin ensures
the invariance of programs under any particular choice of origin.
For this, we first define a family of binary relations on R2 that is
indexed by changes of origin. Changes of origin are represented by
vectors in R2, and form a group T2 of translations under addition.
The T2-indexed family of binary relations {R~t ⊆ R2 × R2}~t∈T2

is then defined by R~t = {(~v, ~v′) | ~v′ = ~v+~t}. We then consider a
function f that takes as input two tuples in R2 and returns a single
tuple in R2. We intend that the tuples all represent points with
respect to the same origin, and that f is invariant under the choice
of origin. Reynolds’ relational approach formalises this intention
precisely. For any ~t ∈ T2:

∀(~v1, ~v′1) ∈ R~t, (~v2, ~v′2) ∈ R~t.(f(~v1, ~v2), f(~v′1,
~v′2)) ∈ R~t (1)

Unfolding the definition of R~t gives the equivalent formulation,
again for all ~t ∈ T2:

∀~v1, ~v2. f(~v1 + ~t, ~v2 + ~t) = f(~v1, ~v2) + ~t. (2)

Thus, Reynolds’ preservation of relations, when instantiated with
the family of relations {R~t}, yields exactly the geometric property
of invariance under change of origin.

2.2 A Type System for Change of Origin Invariance
Reynolds also showed how a type discipline can be used to estab-
lish that (the denotational interpretations of) programs preserve re-
lations. For Reynolds, the type discipline of interest was that of the
polymorphic λ-calculus, which supports the construction of new
types by universal quantification over types. In terms of relations,
Reynolds interprets universal quantification over types as quantifi-
cation over binary relations between denotations of types. By con-
trast, in our statements of geometric invariance in Section 2.1 we
did not quantify over all relations, but instead quantified over all
changes of origin and used a specific choice of origin to select a
relation from the family {R~t}. This suggests introducing quantifi-
cation over changes of origin into the language of types. We use the
notation ∀t:T2.A for quantification over all 2-dimensional transla-
tions (i.e., choices of origin) t, and refer to T2 as the sort of t. Note
the difference in fonts used to distinguish the semantic group T2

from the syntactic sort T2. We use a similar convention below, too.
Since the sort T2 represents an abelian group, we can combine

its elements using the usual group operations. We write operations
additively, using e1+e2 for the group operation,−e for inverse and
0 for the unit. We also regard expressions built from variables and
the group operations up to the abelian group axioms. For example,
we regard e1 + (e2 + e3) and (e1 + e2) + e3 as equivalent.

Our language of types includes the unit type unit and, for all
types A and B, the function type A → B, the sum type A + B,
and the tuple type A × B. We also assume a primitive type real,
used to represent scalars. Although tuples of real numbers represent
points and vectors in geometric applications, we cannot express this
via the type real × real. Indeed, two elements of type real are
related if and only if they are equal and, by Reynolds’ interpretation
of tuple types, two elements of real × real are also related if
and only if they are equal. But since this does not give the correct
relational interpretations for points and vectors, we introduce a new
type vec〈e〉, indexed by expressions e of sort T2, to represent them.
The index e represents the displacement by change of origin of
a point of this type. Although we have taken pains to distinguish
geometric points and vectors, we use the name vec for both to

https://github.com/bobatkey/algebraically-indexed-types

recall the computer science notion of vector as a homogeneous
sequence of values with a known length (in this case, 2).

As is standard for parametricity, every type has two interpreta-
tions: an index-erasure interpretation that ignores the indexing ex-
pression, and a relational interpretation as a binary relation on the
index-erasure interpretation. We denote the index-erasure and re-
lational interpretations with the notations b·c and J·K respectively.
To give such interpretations for the types vec〈e〉 and ∀t:T2.A, we
assume for now that we can map each expression e of sort T2 to
an element JeKρ of the group T2 using some environment ρ that
interprets e’s free variables. The index-erasure and relational inter-
pretations of vec〈e〉 are:

bvec〈e〉c = R2

Jvec〈e〉Kρ = RJeKρ = {(~v, ~v′) | ~v′ = ~v + JeKρ}
The index-erasure and relational interpretations of ∀t:T2.A are:

b∀t:T2.Ac = bAc
J∀t:T2.AKρ =

⋂
{JAK(ρ,~t) | ~t ∈ T2}

The index-erasure and relational interpretations are given formally
in Sections 3.3 and 3.4.

At the end of Section 2.1 we considered functions f : R2 ×
R2 → R2 that preserve all changes of origin. This property of f
can be expressed in terms of types by f : ∀t:T2. vec〈t〉×vec〈t〉 →
vec〈t〉. Spelling out the relational interpretation of this type using
the definitions above and the standard relational interpretations for
tuple and function types, we recover Statement 2 exactly.

2.3 Affine and Vector Operations
Invariance under change of origin is the key feature of affine geom-
etry, whose central operation is the affine combination of points:
λ1 ~v1 + λ2 ~v2, where λ1 + λ2 = 1. Geometrically, this can be in-
terpreted as describing all the points on the unique line through the
points represented by ~v1 and ~v2 (assuming ~v1 6= ~v2). We add affine
combination of points to our calculus as follows:

affComb : ∀t:T2. vec〈t〉 → real→ vec〈t〉 → vec〈t〉
baffCombc ~v1 r ~v2 = (1− r)~v1 + r ~v2

It can be verified by hand that the index-erasure interpretation
baffCombc is invariant under all changes of origin, as dictated by
its type.

Example 1. The evaluation of quadratic Bézier curves (Bézier
curves with two endpoints and a single control point) can be ex-
pressed using the affine combination primitive as follows:

quadBézier : ∀t:T2. vec〈t〉→vec〈t〉→vec〈t〉→real→vec〈t〉
quadBézier [t] p0 p1 p2 s =

affComb [t] (affComb [t] p0 s p1) s (affComb [t] p1 s p2)

For two endpoints p0 and p2, a control point p1, and s ∈ [0, 1],
an application quadBézier p0 p1 p2 s gives the point on the curve
at “time” s. The type of quadBézier immediately tells us that it
preserves all changes of origin.

The obvious type for vector addition is (+) : vec〈0〉 →
vec〈0〉 → vec〈0〉. But we can reflect the fact that (+) is not
invariant under change of origin by giving it a more precise type
that reflects how it varies with change of origin:

(+) : ∀t1, t2:T2. vec〈t1〉 → vec〈t2〉 → vec〈t1 + t2〉

Intuitively, this type says that if the first input vector has been
displaced by t1 and the second by t2, then their sum is displaced by
t1 + t2. We can also negate vectors, yielding a vector which points
in the opposite direction. Negation negates translation arguments:

negate : ∀t:T2. vec〈t〉 → vec〈−t〉

Finally, with the primitive operations of addition and negation of
vectors we can define the derived operation of subtraction:

(−) : ∀t1, t2:T2. vec〈t1〉 → vec〈t2〉 → vec〈t1 − t2〉
(−) [t1] [t2] p1 p2 = p1 + negate p2

Given two points that are invariant with respect to the same
change of origin—i.e., two values of type vec〈t〉—we can use
subtraction to compute their offset:

offset : ∀t:T2. vec〈t〉 → vec〈t〉 → vec〈0〉
offset [t] p1 p2 = p1 − p2

The result is a vector expressed with respect to the null change
of origin: note how the algebraic structure on the indexing theory
induces type equalities that can be used to simplify the type of the
result of offset from vec〈t−t〉 to vec〈0〉. The type of (+) can also
be specialised to the case of moving a point by a vector:

moveBy : ∀t:T2. vec〈t〉 → vec〈0〉 → vec〈t〉
moveBy [t] p v = p+ v

The types we assign to the remaining vector space primitives,
namely 0 : vec〈0〉 for the zero vector and (∗) : real→ vec〈0〉 →
vec〈0〉 for multiplication by a scalar, do not describe any interest-
ing effects on translations.

Example 2. The vector space operators and the properties that fol-
low from their types allow us to establish a useful type isomor-
phism. Consider functions with types following the schema:

τn
def
= ∀t:T2. vec〈t〉 → ...→ vec〈t〉︸ ︷︷ ︸

n+1 times

→ real

Just by looking at the types τn, we know that their inhabitants will
be invariant under change of origin because of the quantification
over all t in T2. So we may as well choose one of the input points
as the origin and assume that all the other points are defined with
respect to it. This formalises the common mathematical practice of
stating that “without loss of generality” we can take some point in
a description of a problem to be the origin provided the problem
statement is invariant under translation. Each type τn is isomorphic
to the corresponding type σn:

σn
def
= vec〈0〉 → ...vec〈0〉︸ ︷︷ ︸

n times

→ real

We demonstrate these isomorphisms formally in Section 4, in the
more general setting of types indexed by abelian groups.

Example 3. So far we have emphasised the derivation of prop-
erties, or “free theorems”, of programs from their types. But us-
ing more refined relational interpretations of types we can also
show that certain types are uninhabited. For example, the type
∀t:T2. vec〈t + t〉 → vec〈t〉 has no inhabitants. Intuitively, this
is because we cannot remove the extra t in vec〈t + t〉 using the
vector operations. We formalise this non-definability result in Sec-
tion 5 using a specialised relational interpretation.

2.4 Change of Basis Invariance
Although vector addition, negation, and scaling are not invariant
under change of origin, they are invariant under change of basis. As
with origin invariance, we can express basis invariance as preser-
vation of relations indexed by changes of basis. Change of basis
is achieved by applying an invertible linear map, and the collec-
tion of all such maps on R2 forms the General Linear group GL2,
which we represent in our language by a new indexing sort GL2

with (non-abelian) group structure that we will write multiplica-
tively. We then extend vec to allow indices of sort GL2, as well as
T2, so that vec〈B, t〉 is a vector that varies with change of basis B

0 : ∀s:GL1. real〈s〉
1 : real〈1〉

(+) : ∀s:GL1. real〈s〉 → real〈s〉 → real〈s〉
(−) : ∀s:GL1. real〈s〉 → real〈s〉 → real〈s〉
(∗) : ∀s1, s2:GL1. real〈s1〉 → real〈s2〉 → real〈s1s2〉
(/) : ∀s1, s2:GL1. real〈s1〉 → real〈s2〉

→ real〈s1s
−1
2 〉+ unit

abs : ∀s:GL1. real〈s〉 → real〈|s|〉

Figure 2. Operations on scaled real numbers

and change of origin t. Formally, the index-erasure and relational
semantics of vec〈B, t〉 are given by:

bvec〈eB , et〉c = R2

Jvec〈eB , et〉Kρ = {(~v, ~v′) | ~v′ = (JeBKρ)~v + JetKρ}

Affine Geometry An affine transformation is an invertible linear
map together with a translation. We can assign types to all the
primitive affine and vector space operations indicating how they
they behave with respect to affine transformations:

affComb : ∀B:GL2, t:T2.
vec〈B, t〉 → real→ vec〈B, t〉 → vec〈B, t〉

(+) : ∀B:GL2, t1, t2:T2.
vec〈B, t1〉 → vec〈B, t2〉 → vec〈B, t1 + t2〉

negate : ∀B:GL2, t:T2. vec〈B, t〉 → vec〈B,−t〉
0 : ∀B:GL2. vec〈B, 0〉

(∗) : ∀B:GL2. real→ vec〈B, 0〉 → vec〈B, 0〉

Euclidean Geometry Euclidean geometry extends affine geome-
try with the dot product, or inner product, operation of two vectors.
The dot product is defined by (x1, y1) ·(x2, y2) = x1x2 +y1y2. To
assign it a type we note that, although dot product is not invariant
under GL2 or T2, it is invariant under the subgroup O2 of GL2 of
orthogonal linear transformations, i.e., the subgroup of invertible
linear maps whose matrix representations’ transposes are equal to
their inverses. We thus introduce a new sort O2 of orthogonal trans-
formations, and overload the multiplicative group operations for in-
habitants of O2. Further assuming an injection ιO that takes e : O2

to ιO(e) : GL2 we assign dot product this type:

(·) : ∀O:O2. vec〈ιOO, 0〉 → vec〈ιOO, 0〉 → real

The cross product of two vectors is defined on coordinate rep-
resentations as (x1, y1)× (x2, y2) = x1y2−x2y1. Geometrically,
the cross product is the signed area of the parallelogram described
by the pair of input vectors. Under change of basis by an invertible
linear transformation B, the cross product of two vectors varies
with the determinant of B. This corresponds to scaling the plane
by the change of basis transformation, so we augment our calculus
with a new sort GL1 of scale factors (i.e., 1-dimensional invertible
linear maps). Semantically, GL1 ranges over the non-zero real num-
bers and forms an abelian group which we write multiplicatively.
We also add two new operations: determinant, detB, which takes
an inhabitant of GL2 to its determinant in GL1, and absolute value,
|e|, which takes scaling factors to scaling factors. We also refine
the type real of real numbers so that it is indexed by the sort GL1:
real〈e〉. The old type real is then just real〈1〉, and the full col-
lection of operations on real numbers indexed by scaling factors is
shown in Figure 2. We can thus assign cross product the type:

(×) : ∀B:GL2. vec〈B, 0〉 → vec〈B, 0〉 → real〈detB〉

Since the absolute value of the determinant of an orthogonal trans-
formation is always 1, we assume |det(ιOO)| = 1 to hold for any
O ∈ O2.

Example 4. We can use the operations of this subsection to com-
pute the area of a triangle. We have:

area : ∀B:GL2, t:T2.
vec〈B, t〉 → vec〈B, t〉 → vec〈B, t〉 → real〈|detB|〉

area [B] [t] p1 p2 p3 = 1
2
∗ abs ((p2 − p1)× (p3 − p1))

The calculation is performed in several steps, each of which re-
moves some of the symmetry described by the type of area. First,
the two offset vectors p2 − p1 and p3 − p1 are computed. These
operations remove the effect of translations on the result in exactly
the same way as the type isomorphism in Example 2. Next, we
compute the cross product of the two vectors, which gives the area
of the parallelogram described by the sides of the triangle and has
type real〈detB〉. This removes some of the symmetry due to in-
vertible linear maps, but the cross product still varies with the sign
of the determinant. We remove this symmetry as well using abs.
This gives a value of type real〈|detB|〉 which we multiply by 1

2
to recover the area of the triangle rather than that of the whole paral-
lelogram. If we specialise area to just orthogonal transformations,
the assumption | det(ιOO)| = 1 gives the following type:

area : ∀O:O2, t:T2.
vec〈ιOO, t〉 → vec〈ιOO, t〉 → vec〈ιOO, t〉 → real〈1〉

This type shows that the area of a triangle is invariant under or-
thogonal transformations and translations. Combinations of such
transformations are isometries, i.e., distance preserving maps.

2.5 Scale Invariance and Dimensional Analysis
Indexing types by scaling factors brings us to the original inspira-
tion for the current work: Kennedy’s interpretation of his units of
measure type system via scaling invariance [13]. Kennedy shows
how interpreting types in terms of scaling invariance brings the
techniques of dimensional analysis to bear on programming. The
types of the real number arithmetic operations in Figure 2 are ex-
actly the types Kennedy assigns in his units of measure system, ex-
cept for that of the absolute value operation. Semantically, our type
indexes by non-zero scaling factors, whereas Kennedy’s indexes by
strictly positive ones.

In our two-dimensional setting we can add to Kennedy’s one-
dimensional scaling invariance an operation ι1 that, semantically,
takes scale factors in GL1 to invertible linear maps in GL2, i.e.,
takes numbers s to matrices (s 0

0 s). This operation satisfies the
equation det(ι1s) = s2, indicating that scaling the plane by s in
both directions scales areas by s2.

Example 5. Just as we specialised the type of the area function
to orthogonal transformations in Example 4, we can also specialise
area’s type to scaling transformations. This yields the type:

area : ∀s:GL1, t:T2.
vec〈ι1s, t〉 → vec〈ι1s, t〉 → vec〈ι1s, t〉 → real〈s2〉

As expected, the area of a triangle varies with the square of scalings
of the plane, and this is reflected in the type.

Linear maps of the form (s 0
0 s), as generated by ι1, commute

with all other invertible linear maps. We thus require (ι1s)B =
B(ι1s) to hold. The scaling maps (s 0

0 s) are precisely the elements
of GL2 that commute with all others; these form the centre of GL2.
If we keep track of scalings, then we can assign the more precise
types to scalar multiplication and dot product. These are shown in
Figure 3, which summarises the most general types of all the vector
operations that we have described.

0 : ∀B:GL2. vec〈B, 0〉
(+) : ∀B:GL2, t1, t2:T2.

vec〈B, t1〉 → vec〈B, t2〉 → vec〈B, t1 + t2〉
negate : ∀B:GL2, t:T2. vec〈B, t〉 → vec〈B,−t〉

(∗) : ∀s:GL1, B:GL2.
real〈s〉 → vec〈B, 0〉 → vec〈ι1(s)B, 0〉

affComb : ∀B:GL2, t:T2.
vec〈B, t〉 → real〈1〉 → vec〈B, t〉 → vec〈B, t〉

(·) : ∀s:GL1, O:O2. vec〈ι1(s)ιO(O), 0〉 →
vec〈ι1(s)ιO(O), 0〉 → real〈s2〉

(×) : ∀B:GL2. vec〈B, 0〉 → vec〈B, 0〉 → real〈detB〉

Figure 3. Operations on vectors

Example 6. With the operations in Figure 2, it is not possible to
write a term with the following type that is not constantly zero:

∀s:GL2. real〈s2〉 → real〈s〉
This was shown by Kennedy for his units of measure system [13].
In particular, it is not possible to write a square root function with
the above type. The non-definability of square root is similar to the
uninhabitation of the type in Example 3.

In Section 4.3 we revisit Kennedy’s result and show that even if
we add square root as a primitive operation—with the type above—
then it is still not possible to construct the cube root function.
The non-definability of cube root is related to the impossibility of
trisecting an arbitrary angle by ruler and compass constructions.

3. A General Framework
We now present our framework for algebraically indexed types
and its relational interpretation. We define the syntax of alge-
braically indexed types (Section 3.1) and a syntax for terms in
a general programming language for algebraically indexed types
(Section 3.2). We give an index-erasure semantics to types and
terms (Section 3.3), and based on this semantics define notions of
contextual equivalence and type isomorphism. We then introduce
a relational semantics for types parameterised by an appropriate
‘model’ of the algebraic theory (Section 3.4), prove the central
Abstraction Theorem and use the relational semantics to define a
notion of semantic equivalence that soundly approximates contex-
tual equivalence (Section 3.5).

We will use a type system for affine geometry as a running
example throughout, so that by the end of the section we have
prepared enough syntactic and semantic gadgets to let us prove
invariance and abstraction properties for geometric examples in
Section 4.

3.1 Algebraically-Indexed Types
The index expressions and types of an instantiation of our general
framework are derived from the following data:

1. A collection Sort of index sorts. We use the meta-syntactic
variables s, s1, s2, . . . for arbitrary sorts taken from Sort .

2. A collection IndexOp of index operations, with a function
opArity : IndexOp → Sort∗ × Sort . (We use the notation
A∗ to denote the set of lists of elements of some set A.)

3. A collection PrimType of primitive types, with a function
tyArity : PrimType → Sort∗, describing the sorts of the
arguments of each primitive type.

Example (Geometry: syntax). The two-dimensional geometry
system has a sort for each of the geometric groups mentioned
in Section 2, so Sort = {T2,GL2,O2,GL1}. We have additive
group structure on T2, multiplicative group structure on GL1,
GL2, and O2, injections from O2 and GL1 into GL2, determi-
nant, and absolute value. Thus, IndexOp = {0,+,−, 1G,− ·G
−,−−1G , ιO, ι1, det, |·|}, where G ∈ {GL1,GL2,O2}, and

opArity(0) =([],T2) opArity(1G) =([], G)
opArity(+) =([T2,T2],T2) opArity(·G) =([G,G], G)
opArity(−) =([T2],T2) opArity(−1G)=([G], G)
opArity(ιO) =([O2],GL2) opArity(ι1) =([GL1],GL2)
opArity(det)=([GL2],GL1) opArity(|·|) =([GL1],GL1)

The intended interpretations of the top three pairs of operations
are group unit, group combination and group negation, respec-
tively. When we discuss equational theories on index expressions
in Section 3.1.2 we will impose the (abelian) group laws. For
this example, we also have PrimType = {vec, real}, with
tyArity(vec) = [GL2,T2] and tyArity(real) = [GL1].

We assume a countably infinite collection of index variable
names i, i1, i2, etc. Index contexts ∆ = i1:s1, . . . , in:sn are lists
of variable/sort pairs such that all the variable names are distinct.
The rules in Figure 4 generate two judgements: well-sorted index
expressions ∆ ` e : s and well-indexed types ∆ ` A type. Since
index variables may appear in types, types are judged to be well-
indexed with respect to an index context ∆. The rules for well-
sorted index expressions are particularly simple: either an index
expression is a variable that appears in the context (rule IVAR), or it
is an application of an index operation taken from IndexOp to other
index expressions (rule IOP). The rules for well-indexed types in-
clude the usual ones for the simply-typed λ-calculus with unit, sum
and tuple types (rules TYUNIT, TYARR, TYTUPLE and TYSUM). We
use bool as an abbreviation for unit + unit. The rule TYPRIM

forms, from a primitive type X and appropriately sorted index ex-
pressions e1, . . . , en, the well-indexed type X〈e1, . . . , en〉. The rule
TYFORALL forms universally quantified types, where the universal
quantification ranges over all index expressions of some sort. Exis-
tential types, formed using the TYEX rule, allow for abstraction by
hiding.

3.1.1 Substitution of Index Expressions
It is convenient to express substitution of index expressions in terms
of simultaneous substitutions. Given a pair of index contexts ∆
and ∆′ = i1:s1, . . . , in:sn, a (simultaneous) substitution ∆ `
σ ⇒ ∆′ is a sequence of expressions σ = (e1, . . . , en) such
that ∆ ` ej : sj for all 1 ≤ j ≤ n. Given a substitution
∆ ` σ = (e1, . . . , en) ⇒ ∆′ and a variable ij :sj in ∆′, we write
σ(ij) for the index expression ej . We write ∆ ⇒ ∆′ for the set
of all substitutions σ such that ∆ ` σ ⇒ ∆′. We can think of any
sequence of sorts as an index context. In particular, we will make
use of substitutions of the form ∆ ` σ ⇒ tyArity(X), since these
are exactly sequences of index arguments suitable for the primitive
type X. By further abuse of notation, we write ∆⇒ tyArity(X) for
the set of all substitutions σ such that ∆ ` σ ⇒ tyArity(X).

For a substitution ∆ ` σ ⇒ ∆′, where ∆′ = i1:s1, . . . , in:sn,
and a variable/sort pair i:s such that i does not appear in either
∆ or ∆′, we can form the lifted substitution ∆, i:s ` σi:s =
(σ(i1), . . . , σ(in), i)⇒ ∆′, i:s. Application of a substitution ∆ `
σ ⇒ ∆′ to a well-sorted index expression ∆′ ` e : s yields a
well-sorted index expression ∆ ` σ∗e : s. The expression σ∗e is
defined on variables as σ∗i

def
= σ(i), and on operation symbols as

σ∗(f(e1, . . . , en))
def
= f(σ∗e1, . . . , σ

∗en). Given ∆′ ` A type,
we have ∆ ` σ∗A type. The key clauses defining σ∗A are for

Well-sorted index expressions
i : s ∈ ∆

∆ ` i : s
IVAR

f ∈ IndexOp opArity(f) = ([s1, . . . , sn], s) {∆ ` ej : sj}1≤j≤n
∆ ` f(e1, . . . , en) : s

IOP

Well-indexed types
X ∈ PrimType

tyArity(X) = [s1, . . . , sn] {∆ ` ej : sj}1≤j≤n
∆ ` X〈e1, . . . , en〉 type

TYPRIM
∆ ` unit type

TYUNIT
∆ ` A type ∆ ` B type

∆ ` A→ B type
TYARR

∆ ` A type ∆ ` B type

∆ ` A×B type
TYTUPLE

∆ ` A type ∆ ` B type

∆ ` A+B type
TYSUM

∆, i:s ` A type

∆ ` ∀i:s.A type
TYFORALL

∆, i:s ` A type

∆ ` ∃i:s.A type
TYEX

Figure 4. Index expressions and types

primitive types and the universal and existential quantifiers:

σ∗(X〈e1, . . . , en〉)
def
= X〈σ∗e1, . . . , σ

∗en〉
σ∗(∀i:s.A)

def
= ∀i:s.σ∗i:sA σ∗(∃i:s.A)

def
= ∃i:s.σ∗i:sA

The identity substitution ∆ ` id∆ ⇒ ∆ is id∆ = (i1, . . . , in)
where ∆ = i1:s1, . . . , in:sn. The composition of two substitutions
∆ ` σ ⇒ ∆′ and ∆′ ` σ′ ⇒ ∆′′, where σ′ = (e′1, . . . , e

′
n),

is defined as ∆ ` σ′ ◦ σ def
= (σ∗e′1, . . . , σ

∗e′n) ⇒ ∆′′. Given
a context ∆ = i1:s1, . . . , in:sn, and a variable/sort pair i:s such
that i does not appear in ∆, we define the projection substitution
∆, i:s ` πi:s ⇒ ∆ as πi:s = (i1, . . . , in).

3.1.2 Index Expression Equality and Type Equality
Much of the power of indexing types by the expressions of an alge-
braic theory comes from the equations of the theory. For example,
in Section 2 the types vec〈B, t1 +t2〉 and vec〈B, t2 +t1〉 are con-
sidered equal by the type system because + is commutative. In the
general framework, the equations between types are derived from a
set IndexAx of axioms ∆ ` e ax≡ e′ : s that are well-sorted, in the
sense that both ∆ ` e : s and ∆ ` e′ : s hold.

Given a set IndexAx of axioms, we generate the equality judg-
ment between index expressions ∆ ` e ≡ e′ : s by a set of rules.
The following rule lets us use substitution instances of axioms:

(∆′ ` e ax≡ e′ : s) ∈ IndexAx ∆ ` σ ⇒ ∆′

∆ ` σ∗e ≡ σ∗e′ : s

We also assume the standard congruence, reflexivity, symmetry and
transitivity rules for the equality judgment.

Example (Geometry: axioms). In Section 2 we assumed various
equational axioms for indexing expressions standing for elements
of geometric groups. Assuming the abelian group axioms for trans-
lations we can formalise this in our framework:

t : T2 ` t+ 0
ax≡ t : T2

t1, t2, t3 : T2 ` t1 + (t2 + t3)
ax≡ (t1 + t2) + t3 : T2

t : T2 ` t+ (−t) ax≡ 0 : T2

t1, t2 : T2 ` t1 + t2
ax≡ t2 + t1 : T2

Similarly, the sort of scale factors GL1 forms an abelian group un-
der multiplication, and the sorts GL2 and O2 form (non-abelian)
multiplicative groups, so we assume the appropriate axioms. We
also assume that the operations ιO, ι1, det and |·| are group homo-
morphisms, and that expressions of the form ι1(s) commute with
group multiplication in the sort GL2. The absolute value of the de-
terminant of an orthgonal transformation is always 1, so we also
assume |det(ιOO)| ax≡ 1. Similarly, scaling maps have a determi-

nant expressible in terms of other operations: det(ι1(s))
ax≡ s · s.

We also assume the axiom |s2| ax≡ s2.

The equality judgment ∆ ` e ≡ e′ : s on index expressions
generates the equality judgment ∆ ` A ≡ B type on types.
The basic rule generating equality judgments on types equates
applications of primitive types if their arguments are equal:

{∆ ` ej ≡ e′j : sj}1≤j≤n
∆ ` X〈e1, . . . , en〉 ≡ X〈e′1, . . . , e′n〉 type

The rest of the rules for equality on types ensure that it is a congru-
ence relation and an equivalence relation.

The substitutions ∆ ` σ ⇒ ∆′ and ∆ ` σ′ ⇒ ∆′ are defined
to be equal, and written ∆ ` σ ≡ σ′ ⇒ ∆′, if their component
expressions are equal in the context ∆: i.e., if ∆ ` ej ≡ e′j : sj ,
for all j.

3.2 Well-typed terms
We now present the rules for well-typed terms over the collection
of types we defined in Section 3.1.

Well-typed terms are defined with respect to well-indexed typ-
ing contexts, which are in turn defined with respect to an index con-
text. Well-indexed typing contexts with respect to an index context
∆ are sequences of variable/type pairs with no repeated variable
names such that each type is well-indexed with respect to ∆. For-
mally, well-indexed typing contexts are given by

∆ ` ε ctxt
∆ ` Γ ctxt ∆ ` A type x 6∈ Γ

∆ ` Γ, x : A ctxt

Application of substitutions extends to typing contexts by applying
the substitution to each type.

Well-typed terms are defined with respect to an index context ∆
and a type context ∆ ` Γ ctxt. The judgment ∆; Γ ` M : A is
defined in Figure 5. The equational theory on types is incorporated
into the type system via the rule TYEQ, which allows a term that
has type A to also have any equal type B as well.

For any particular theory we assume that there is a closed typing
context Γops that describes the types of the primitive operations.

Example (Geometry: operations). For geometry Γops would col-
lect together the types of primitive operations as listed in Figure 2
and Figure 3.

3.3 Index-Erasure Semantics
Having defined the syntax of algebraically indexed types and terms,
we turn to their denotational interpretation. We first define an index-
erasure interpretation of types and terms that interprets every well-
indexed type as a set, ignoring the indexing expressions, and which

∆ ` Γ ctxt x : A ∈ Γ

∆; Γ ` x : A
VAR

∆; Γ `M : A ∆ ` A ≡ B type

∆; Γ `M : B
TYEQ

∆ ` Γ ctxt

∆; Γ ` ∗ : 1
UNIT

∆; Γ `M : A ∆; Γ ` N : B

∆; Γ ` (M,N) : A×B
PAIR

∆; Γ `M : A×B
∆; Γ ` π1M : A

PROJ1
∆; Γ `M : A×B
∆; Γ ` π2M : B

PROJ2
∆; Γ `M : A

∆; Γ ` inl M : A+B
INL

∆; Γ `M : B

∆; Γ ` inr M : A+B
INR

∆; Γ `M : A+B
∆; Γ, x : A ` N1 : C
∆; Γ, y : B ` N2 : C

∆; Γ ` case M of inl x.N1; inr y.N2 : C
CASE

∆; Γ, x : A `M : B

∆; Γ ` λx.M : A→ B
ABS

∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `MN : B
APP

∆, i:s;π∗i:sΓ `M : A

∆; Γ ` Λi.M : ∀i:s.A
UNIVABS

∆; Γ `M : ∀i:s.A ∆ ` e : s

∆; Γ `M [e] : (id∆, e)
∗A

UNIVAPP

∆; Γ `M : (id∆, e)
∗A ∆ ` e : s ∆, i:s ` A type

∆; Γ ` 〈[e],M〉 : ∃i:s.A
EXPACK

∆; Γ `M : ∃i:s.A
∆, i:s;π∗i:sΓ, x : A ` N : π∗i:sB

∆; Γ ` let〈[i], x〉 = M in N : B
EXUNPACK

Figure 5. Well-typed terms

interprets open terms as functions that map environments to final
values.

Interpretation of Types. The defining feature of the index erasure
interpretation is that semantics of a well-indexed type X〈e1, . . . , en〉
is determined solely by the primitive type X and not by the in-
dex expressions e1, . . . , en. We thus assume each primitive type
X ∈ PrimType is assigned a set bXc and extend this assignment to
well-indexed types by induction on the type structure:

bunitc def
= {∗}

bA×Bc def
= bAc × bBc

bA→ Bc def
= bAc → bBc

bA+Bc def
= bAc+ bBc

bX〈e1, . . . , en〉c
def
= bXc

b∀i:s.Ac def
= bAc

b∃i:s.Ac def
= bAc

(We will overload the notation b·c for all index-erasure interpre-
tations, and reserve notation J·K for the index-observing relational
semantics defined later.)

The index-erasure interpretation completely ignores index ex-
pressions and quantifiers, and type equality is defined as an exten-
sion of index equality. Therefore, it is straightforward to prove that
equal types have equal denotations when interpreted in the index-
erasure semantics, and that substitution of index terms has no effect
on the index-erasure interpretation of types:

Lemma 1. 1. If ∆ ` A ≡ B type then bAc = bBc; and
2. If ∆′ ` A type and ∆ ` σ ⇒ ∆′, then bσ∗Ac = bAc.

Interpretation of Terms. We assign an index-erasure semantics to
any well-indexed typing context ∆ ` Γ ctxt by induction: bεc =
{∗} and bΓ, x : Ac = bΓc × bAc. For a well-typed term ∆; Γ `
M : A, we define the erasure interpretation as a function bMc :
bΓc → bAc that completely ignores the indexing information.
In light of Lemma 1, we do this directly on the syntax of well-
typed terms, rather than on typing derivations. The definition of
bMc is completely standard, except for the clauses for universal
and existential types:

bΛi. Mc η def
= bMc η bM [e]c η def

= bMc η
b〈[e],M〉c η def

= bMc η
blet〈[i], x〉 = M in Nc η def

= bNc (η, bMc η)

For any particular theory we assume that there is an interpreta-
tion of the primitive operations ηops ∈ bΓopsc.

Example (Geometry: interpretation). The two-dimensional geom-
etry instantiation of the general framework uses the assignment
bvecc = R2 and brealc = R. We assume that ηops gives the
usual interpretation to scalar and vector operations from Figure 2
and Figure 3.

Contextual Equivalence. We use our index-erasure semantics
to define when a pair of terms are contextually equivalent with
respect to syntactically defined contexts, following Hofmann [11].
Given an index context ∆ = i1:s1, ..., in:sn, we write ∀∆.A for
∀i1:s1. . . .∀in:sn.A, and similarly for Λ∆.M and λΓ.M .

Definition 1 (Contextual Equivalence). Two terms ∆; Γops ,Γ `
M1,M2 : A are contextually equivalent, written ∆; Γ ` M1 ≈
M2 : A, if for all contexts ·; Γops ` C : (∀∆.Γ→ A)→ bool, it
is the case that bC (Λ∆.λΓ.M1)c ηops = bC (Λ∆.λΓ.M2)c ηops .

Type Isomorphism. We say that well-indexed types ∆ ` A type
and ∆ ` B type are isomorphic, and write ∆ ` A ∼= B, if there
exist maps between them that are mutually inverse with respect to
contextual equivalence, i.e., if there are terms ∆ ` I : A → B
and ∆ ` J : B → A such that ∆;x : A ` J(I(x)) ≈ x : A and
∆; y : B ` I(J(y)) ≈ y : B. That ∼= is a congruence with respect
to the type formation rules of Figure 4 is straightforward. We
can also derive isomorphisms that are independent of the indexing
theory, such as ∆ ` A×B ∼= B ×A, and ∆ ` ∀i:s.(A→ B) ∼=
A→ ∀i:s.B for i not free in A.

3.4 The Relational Interpretation of Types
The relational semantics of the well-indexed type ∆ ` A type is a
binary relation on the index-erasure interpretation of A. We write
Rel(X) for the set of binary relations R ⊆ X ×X on the set X .

For the unit, tuple, sum and function types we define the re-
lational interpretation as a standard logical relation. The relational
interpretations of primitive types with index arguments and the uni-
versally quantified types require an interpretation of index contexts.

An index environment ρ assigns to each index variable i : s
in the context ∆ a value drawn from an interpretation of the sort
s that soundly models the equational theory associated with s.
We call such an interpretation a model: it assigns to each index
operation in the equational theory a corresponding operation in
the interpretation, so that index expressions can be interpreted by
recursion on their structure.

For example, the sort T2 of translations can be modelled by any
abelian group. An obvious candidate here is the additive group over

R2, which we will use to obtain invariance under translation; but we
could use the additive group Q, or even a finite group such as the
two-element group Z2.

Models. A model assigns to each sort s ∈ Sort a carrier set JsK,
and assigns to each operation f ∈ IndexOp with opArity(f) =
([s1, . . . , sn], s), a function JfK : Js1K× · · · × JsnK→ JsK.

An index context ∆ = (i1:s1, . . . , in:sn) is interpreted as
cartesian product, i.e., J∆K def

= Js1K × · · · × JsnK. For each well-
sorted index expression ∆ ` e : s, we assign a function JeK :
J∆K→ JsK by recursion on the structure of e:

JiKρ def
= ρ(i) Jf(e1, . . . , en)Kρ def

= JfK(Je1Kρ, . . . , JenKρ)

Finally, a model must be sound, that is, for each axiom ∆ `
e
ax≡ e′ : s ∈ IndexAx , we have JeK = Je′K.

Example (Geometry: affine model). We define the model of the
indexing theory for the two-dimensional geometry example as fol-
lows. Each of the sorts is interpreted just as its semantic counter-
part:

JT2K = T2 JGL2K = GL2 JO2K = O2 JGL1K = GL1

Each of the index operations (e.g., the group structure and determi-
nant) is interpreted by the intended semantic operation, and clearly
satisfies the axioms in Example 3.1.2.

Given ρ ∈ J∆K and a substitution ∆ ` σ ⇒ ∆′ with σ =
(e1, . . . , en), we can derive the composed index environment ρ ◦
σ ∈ J∆′K as ρ ◦ σ def

= (Je1Kρ, . . . , JenKρ).

Relational interpretation of primitive types. Having fixed a
model we next choose a relational interpretation of primitive types:
for each each primitive type X, its relational interpretation is pa-
rameterised by elements from the model: JXK : JtyArity(X)K →
Rel(bXc).

Example (Geometry: change of basis interpretation). Given the
model of geometric groups described above, for the relational in-
terpretation of vec〈B, t〉 and real〈s〉, we use JvecK(B,~t) =
{(~v,B~v +~t) | ~v ∈ R2} and JrealK(k) = {(x, kx) | x ∈ R}.

Relational interpretation of types. We assign a relational inter-
pretation to all well-indexed types ∆ ` A type by induction on
their derivations, parameterised by index environments ρ ∈ J∆K:

JunitKρ def
= {(∗, ∗)}

JX〈e1, . . . , en〉Kρ
def
= JXK(Je1Kρ, . . . , JenKρ)

JA→ BKρ def
= JAKρ →̂ JBKρ

JA×BKρ def
= JAKρ ×̂ JBKρ

JA+BKρ def
= JAKρ +̂ JBKρ

J∀i:s.AKρ def
=

⋂
{JAK(ρ,m) | m ∈ JsK}

J∃i:s.AKρ def
=

⋃
{JAK(ρ,m) | m ∈ JsK}

In this definition, the relational interpretation of an application
of a primitive type JX〈e1, . . . , en〉Kρ is built from the relational
interpretation of the primitive type, JXK, and the interpretation of
the index terms e1, ..., en in the index environment ρ. Universal
and existential quantification are interpreted by the set-theoretic
intersection and union, respectively, over all extensions of the index
environment.

We have also used the following standard constructions on bi-
nary relations: if R ∈ Rel(X) and S ∈ Rel(Y), then R →̂ S ∈
Rel(X → Y) is {(f1, f2) | ∀(a1, a2) ∈ R. (f1a1, f2a2) ∈ S},

and R ×̂ S ∈ Rel(X × Y) is {((a1, b1), (a2, b2)) | (a1, a2) ∈
R ∧ (b1, b2) ∈ S}, and R +̂ S ∈ Rel(X + Y) is {(inl x, inl x′) |
(x, x′) ∈ R} ∪ {(inr y, inr y′) | (y, y′) ∈ S}.

The following lemma states that the relational interpretation of
types that we have defined in this section behaves well: the first
part of the lemma states that two types that are judgmentally equal
are given equal relational interpretations, and the second part states
that substitution of index expressions in types can be interpreted by
the composition of index environments with substitutions.

Lemma 2. 1. If ∆ ` A ≡ B type, then JAK = JBK;
2. If ∆′ ` A type then for all ∆ ` σ ⇒ ∆′ and ρ ∈ J∆K,

Jσ∗AKρ = JAK(ρ ◦ σ).

Note that the equations in both parts of Lemma 2 are well-typed by
virtue of the corresponding parts of Lemma 1.

3.5 The Abstraction Theorem and Semantic Equivalence
Our main result (Theorem 1) is that the index-erasure semantics of
every well-typed term is related to itself in the relational interpre-
tation of its type: this is the Abstraction Theorem for every instan-
tiation of our general framework.

The Abstraction Theorem. We now state the Abstraction Theo-
rem for well-typed terms. To state and prove this theorem for open
terms, we extend the relational interpretation of types to typing con-
texts. The relational interpretation of contexts is defined by:

JεKρdef
= {(∗, ∗)} JΓ, x : AKρdef

= JΓKρ ×̂ JAKρ

The relational interpretation of contexts inherits from the rela-
tional interpretation of types the property of interpreting the appli-
cation of substitutions as composition:

Lemma 3. If ∆′ ` Γ ctxt and ∆ ` σ ⇒ ∆′, then for all ρ ∈ J∆K,
we have Jσ∗ΓKρ = JΓK(ρ ◦ σ).

Given a particular choice of model and relational interpretation
of primitive types, we can then prove the following.

Theorem 1 (Abstraction). If ∆; Γ ` M : A, then for all ρ ∈
J∆K and η1, η2 ∈ bΓc such that (η1, η2) ∈ JΓKρ, we have
(bMc η1, bMc η2) ∈ JAKρ.

Proof. By induction on the typing derivation, making use of
Lemma 2 (part 1) for rule TYEQ, Lemma 2 (part 2) for rules
UNIVAPP and EXPACK, and Lemma 3 for rules UNIVABS and
EXUNPACK. The details can be found in the Coq development.

Semantic equivalence of terms is defined in terms of the re-
lational interpretation. As a consequence of Theorem 1, semantic
equivalence is a sound approximation of contextual equivalence.

Let Γops be the context of primitive operations and ηops its
interpretation Fix a model and relational interpretation of primitive
types so that (ηops , ηops) ∈ JΓopsK∗.
Definition 2 (Semantic equivalence). Two terms ∆; Γops ,Γ `
M1,M2 : A are semantically equal, written ∆; Γ |= M1 ∼
M2 : A, if for all ρ ∈ J∆K, and all (η1, η2) ∈ JΓKρ, we have
(bM1c (ηops , η1), bM2c (ηops , η2)) ∈ JAKρ.

Theorem 2 (Soundness). If ∆; Γ |= M1 ∼ M2 : A then ∆; Γ `
M1 ≈M2 : A.

4. Geometric Consequences of Abstraction
We now instantiate our general framework with the indexing theory
of Section 2, and present more general and formally-justified free
theorems, type isomorphisms, and non-definability results. For the
free theorems and isomorphisms, we use the model and relational

interpretation of primitive types described in Section 3.4, namely
that of affine transformations for vectors and scaling for scalars.

4.1 Free Theorems
Consider the type of the triangle area function from Example 4:

area : ∀B:GL2, t:T2.
vec〈B, t〉 → vec〈B, t〉 → vec〈B, t〉 → real〈|detB|〉

By Theorem 1, we can derive the following free theorem. For all
B ∈ GL2, ~t ∈ T2, and ~x, ~y, ~z ∈ R2, we have

|detB|(bareac ~x ~y ~z) = bareac (B~x+ ~t) (B~y + ~t) (B~z + ~t)

Thus, directly from the type of the area function, we can see that its
index-erasure semantics is (a) invariant under translations, and (b)
if the inputs are subjected to a linear transformation B, the output
varies with the absolute value of the determinant of B.

4.2 Type Isomorphisms
Types indexed by abelian groups induce a particularly rich theory
of type isomorphisms; previous work on units of measure [13]
relates these to Buckingham’s theorem from dimensional analysis.
Here we consider the additive abelian groups of translations and
the multiplicative abelian group of scalings.

Translations Consider first the group T2 of translations from
Section 2.2 and Section 2.3.

Example 7 (Geometry: wlog). We prove that

∆, B:GL2 ` (∀t:T2.vec〈B, t〉 → vec〈B, t〉) ∼= vec〈B, 0〉.

Let

X
def
= ∀t:T2.vec〈B, t〉 → vec〈B, t〉 and Y

def
= vec〈B, 0〉

I
def
= λf :X.f [0] (0 [B])

J
def
= λv:Y.Λt:T2.λw:vec〈B, t〉.v + [B, 0, t]w

Unfolding definitions gives that bI(J(v))c (ηops , ~v) = ~v+~0 for any
~v ∈ R2. Because ~0 is the identity for vector addition it follows that
∆, B:GL2; v:Y ` I(J(v)) ≈ v : Y . To show ∆, B:GL2; f :X `
J(I(f)) ≈ f : X we appeal to Theorem 2 and reason using
the relational semantics. It suffices to show ∆, B:GL2; f :X |=
J(I(f)) ∼ f : X; that is, given ρ ∈ J∆, B:GL2K, for any f and f ′

with (f, f ′) ∈ JXKρ, it is the case that (bJ(I(f))c (ηops , f), f ′) ∈
JXKρ. Expanding the premise, we have

∀~t ∈ R2,∀~v ∈ R2, f ′(ρ(B)~v + ~t) = ρ(B)(f(~v)) + ~t (3)

Expanding the conclusion, we have to show that for any ~t0 ∈ R2

and ~v0 ∈ R2, it is the case that f ′(ρ(B)~v0 + ~t0) = ρ(B)(~v0 +
f(0)) + ~t0. By instantiating Equation 3 with ~v = ~0 and ~t =
ρ(B)~v0 + ~t0 and applying a little algebra we obtain this result.

We can generalise this isomorphism substantially, proving that
for any quantifier-free type A, the type ∀t:T2.vec〈B, t〉 → A is
isomorphic to A[0/t], where A[0/t] denotes substitution of the
identity translation 0 for index variable t in type A. This isomor-
phism formalises the equivalence between coordinate-free geome-
try, expressed by a polymorphic type whose first argument can be
thought of as the origin with respect to which A is specified, and a
coordinate-based geometry, expressed by the typeA[0/t], in which
the origin is fixed at (0, 0). It is sometimes said that an affine space
is a vector space that has forgotten its origin; we have captured this
in a type isomorphism.

Lemma 4. Suppose that ∆, B:GL2, t:T2 ` A type,A contains no
quantifiers and every occurrence of vec is of the form vec〈B, ?〉.

Then

∆, B:GL2 ` (∀t:T2.vec〈B, t〉 → A) ∼= A[0/t]

Proof. Let

X
def
= ∀t:T2.vec〈B, t〉 → A and Y

def
= A[0/t]

I
def
= λf :X.f [0] (0 [B])

J
def
= λy:Y.Λt.λv:vec〈B, t〉.↑t:vA (y)

where terms

∆, B:GL2, t:T2; v:vec〈B, t〉 ` ↑t:vA : A[0/t]→ A

∆, B:GL2, t:T2; v:vec〈B, t〉 ` ↓t:vA : A→ A[0/t]

∆, B:GL2, t:T2; v:vec〈B, t〉 ` ↑t:ve : vec〈B, e[0/t]〉 → vec〈B, e〉
∆, B:GL2, t:T2; v:vec〈B, t〉 ` ↓t:ve : vec〈B, e〉 → vec〈B, e[0/t]〉
are defined by induction over the structure of A and e. For brevity
we omit types on binders; also note that the omitted cases for ↓t:vA
have definition symmetric to ↑t:vA :

↑t:vunit = λx.x ↑t:vreal〈e〉 = λx.x

↑t:vA1×A2
= λp.(↑t:vA1

(π1p), ↑t:vA2
(π2p))

↑t:vA1+A2
= λx.case x of inl y.inl(↑t:vA1

y); inr y.inr(↑t:vA2
y)

↑t:vA1→A2
= λf.λx.↑t:vA2

(f(↓t:vA1
x))

↑t:vvec〈B,e〉 = λx.↓t:ve (x) ↓t:vvec〈B,e〉 = λx.↑t:ve (x)

↑t:v0 = λw.w ↓t:v0 = λw.w

↑t:ve1+e2 = λw.↑t:ve1 (↑t:ve2 (w)) ↓t:ve1+e2 = λw.↓t:ve1 (↓t:ve2 (w))

↑t:v−e = λw.↓t:ve (w) ↓t:v−e = λw.↑t:ve (w)

↑t:vt = λw.w + v ↓t:vt = λw.w + (negate v)

↑t:vt′ = λw.w (t′ 6= t) ↓t:vt′ = λw.w (t′ 6= t)

Unfolding definitions, we deduce that

bI(J(y))c (ηops , y) =
⌊
↑t:vA
⌋

(ηops ,~0)(y)

for any y ∈ bA[0/t]c. It’s easy to prove by induction on A that⌊
↑t:vA
⌋

(ηops ,~0)(y) = y, and so ∆, B:GL2; y:Y ` I(J(y)) ≈ y :
Y follows.

For the opposite direction of the isomorphism, we appeal
to Theorem 2 and so it suffices to show ∆, B:GL2; f :X |=
J(I(f)) ∼ f : X; that is, given ρ ∈ J∆, B:GL2K, for any f and f ′

with (f, f ′) ∈ JXKρ, it is the case that (bJ(I(f))c (ηops , f), f ′) ∈
JXKρ. Expanding the premise, we have

∀~t ∈ R2,∀~v ∈ R2, (f(~v), f ′(ρ(B)~v + ~t)) ∈ JAK(ρ,~t) (4)

Expanding the conclusion, we have to show for any ~t0 ∈ R2 and
~v0 ∈ R2, it is the case that (bJ(I(f))c (ηops , f)(~v0), f ′(ρ(B)~v0 +
~t0)) ∈ JAK(ρ, ~t0). Unfolding the definitions of J and I and ex-
panding the erasure semantics, this amounts to showing that

∀~t0, ~v0 ∈ R2, (
⌊
↑t:vA
⌋

(ηops , ~v0)(f ~0), f ′(ρ(B)~v0+~t0)) ∈ JAK(ρ, ~t0).

In order to make progress we prove first by induction on A that for
any ~v and ~w, the meaning of ↑t:vA can be characterized by

(
⌊
↑t:vA
⌋

(ηops , ~v)(x), y) ∈ JAK(ρ, ~w)

⇔ (x, y) ∈ JAK(ρ, ρ(B)~v + ~w)

Thus our goal becomes

∀~t0, ~v0 ∈ R2, (f ~0, f ′(ρ(B)~v0 + ~t0)) ∈ JAK(ρ, ρ(B)~v0 + ~t0).

This is obtained immediately by instantiating Equation 4 with ~v =
~0 and ~t = ρ(B)~v0 + ~t0.

Example 2 and Example 7 are special cases of this isomorphism.
Another instance is the type of vector addition:

∀B:GL2, t1, t2:T2.vec〈B, t1〉 → vec〈B, t2〉 → vec〈B, t1+t2〉
∼= ∀B:GL2, t1:T2.vec〈B, t1〉 → vec〈B, t1〉 (by Lemma 4)

∼= ∀B:GL2.vec〈B, 0〉 (by Lemma 4)
∼= unit (by Theorem 1)

In other words, the vector addition operation is the only inhabitant
of its type!

Scalings For the group GL1 of scalings we can treat a real-valued
argument to a function as a unit of measure with which to scale the
result. Although the argument might be zero, and this cannot be
used for scaling, we still can obtain the following slightly more
complicated isomorphism:

∀s:GL1.real〈s〉 → A ∼= A[1/s]× ∀s:GL1.A (5)

The type of areaCircle from the introduction is one instance:

∀s:GL1.real〈s〉 → real〈s2〉
∼= real〈1〉 × (∀s:GL1.real〈s2〉) (by Equation 5)

∼= real〈1〉 × unit (by Theorem 1)
∼= real〈1〉 (trivially)

4.3 Non-definability
To prove non-definability results, the model and relational inter-
pretation used in the previous two sections are not sufficient. This
is true even for simple scalars with invariance under scaling. Con-
sider the type ∀s:GL1.real〈s2〉 → real〈s〉. There are many func-
tions f : R → R that satisfy its relational interpretation, i.e., for
which f(k2 · x) = k · f(x) for any k 6= 0. Consider

f(x) =

{√
x if x > 0

0 otherwise

for instance. Yet this type contains only the constant zero function,
a fact that we can prove using a surprisingly simple model!

Example 8. If Γops ` f : ∀s:GL1. real〈s2〉 → real〈s〉 then
bfc = λx.0. To show this, take the model

JGL1K
def
= {0, 1} J1K def

= 0 J−1K def
= id

J·K def
= λ(x, y).(x+ y) mod 2 J| − |K def

= id,

in other words, the additive abelian group (Z2,+). Now set

JrealK(z) =

{
∆R if z = 0

{(0, 0)} if z = 1

It’s easy to check that (ηops , ηops) ∈ JΓopsK∗.
We think of z as tracking whether or not exponents on scale

parameters are divisible by 2: all the primitive operations in Fig-
ure 2 produce results with even exponents if their inputs have even
exponents. But the type under consideration here does not.

By Theorem 1 we have that (f, f) ∈ J∀s:GL1. real〈s2〉 →
real〈s〉K∗. Expanding the definitions, this means that for any z ∈
JGL1K and any (x, y) ∈ JrealK((z + z) mod 2), it is the case that
(f(x), f(y)) ∈ JrealK(z). Set z = 1. Then we have that if x = y
then f(x) = f(y) = 0.

The particular model and relational interpretation used here is
devised only to rule out the ‘square root type’ (it does not rule
out a ‘cube root type’, for instance); nevertheless, it is possible
to devise craftier interpretations that serve up both invariance and

more general non-definability results. For example, we can set

JGL1K
def
= GL1 ×Q J·K def

= (·,+) J1K def
= (1, 0)

J−1K def
= (−1,−) J| · |K def

= (| · |, id)

and

JrealK(k, q) =

{
{(x, kx) | x ∈ R} if q ∈ Z
{(0, 0)} otherwise

Example 9. Suppose we extend the operations Γops of Figure 2
and corresponding ηops with a square root operation typed by

sqrt : ∀s:GL1.real〈s2〉 → real〈s〉.

If Γops ` f : ∀s:GL1. real〈s3〉 → real〈s〉 then bfc = λx.0. To
show this, take the model

JGL1K
def
= Q J·K def

= + J1K def
= 0 J−1K def

= − J| · |K def
= id,

in other words, the additive abelian group (Q,+). Now set

JrealK(q) =

{
∆R if ∃n, 2nq ∈ Z
{(0, 0)} otherwise

It’s easy to check that (ηops , ηops) ∈ JΓopsK∗.
Here, q is tracking the exponents on scale parameters, with

JrealK(q) relating only zero to itself unless the denominator of
q is a power of two (a so-called dyadic number). Applying the
Abstraction Theorem and expanding, we have that for any q ∈ Q
and any (x, y) ∈ JrealK(3q), it is the case that (f(x), f(y)) ∈
JrealK(q). Set q = 1

3
. Then we have that if x = y then f(x) =

f(y) = 0.

5. Non-definability for the General Framework
The non-definability results in the previous section required the
use of specially crafted models and relational interpretations. It
is reasonable to ask whether or not there is a general method for
constructing suitable models and relational interpretations to prove
non-definability results. In this section, we show that this is possible
for a large class of first-order types in any instance of our general
framework.

In Example 8, we showed that the type ∀s:GL1. real〈s2〉 →
real〈s〉 only has trivial inhabitants. Intuitively, this is because the
index of the result type (s) cannot be obtained from the index of
the input type (s2) using the abelian group operations and axioms.
This observation can be used to give a sufficient condition for non-
inhabitation for types of the form:

∀i1:s1, . . . , im:sm. X〈e1〉 → . . .→ X〈en〉 → X〈e〉
Roughly speaking, if this type is inhabited, then it must be the case
that the index expression e can be generated from the set of index
expressions {e1, ..., en}.

We assume that we are working with an instantiation of the gen-
eral framework from Section 3 with a closed typing context Γops

describing the types of the primitive operations and a chosen index-
erasure semantics. We will use a special relational interpretation
built from the syntax of the indexing expressions to prove our gen-
eral non-definability result. For simplicity, we assume that there is
only one primitive type, X, but the technique we describe here ex-
tends to the general case. We also assume that bXc is non-empty.

To state our general non-definability condition, we need to de-
fine the set of index expressions generated by some finite set of
index expressions. Given a set S of index expressions that are all
well-indexed in some index context ∆, we define Gen0(S) to be
the set of expressions that are built from the elements of S and the
primitive index operations. To account for the equations between

indexing terms, we close under index expression equivalence to get
the set Gen(S) = {e | ∃s. ∃e′ ∈ Gen0(S). ∆ ` e ≡ e′ : s}.
Now a type is well-generated if it is closed and of the form:

∀i1:s1, . . . , im:sm. X〈e1〉 → . . .→ X〈en〉 → X〈e〉
and e ∈ Gen({e1, ..., en}).

Theorem 3. Assume that the members of Γops are all of well-
generated types. If there exists an M with typing:

Γops `M : ∀i1:s1, ..., im:sm. X〈e1〉 → ...→ X〈en〉 → X〈e〉
then e ∈ Gen({e1, ..., en}).

This theorem is usually applied in the contrapositive: if e 6∈
Gen({e1, ..., en}) then no suchM can exist. Note that if Γops con-
tains operations corresponding to each of the index-level operations
(as, for example, in Figure 2), then this theorem yields a characteri-
sation of definable terms, since the construction of e from e1, ..., en
can be replicated at the term level.

Proof. Let ∆ = i1:s1, ..., im:sm be the index context constructed
from the universally quantified type variables in the type of M .
To interpret the index expressions, we use the free model over the
variables in ∆ constructed from the syntax. This model assigns
to each sort s the set {e | ∆ ` e : s}/≡ of index expressions
quotiented by index expression equality. Index operations are in-
terpreted by the corresponding syntactic operation on equivalence
classes: JfK([e1], ..., [en]) = [f(e1, ..., en)].

We take the relational interpretation of the primitive type X as:

JXK(e) = {(x, x) | x ∈ bXc ∧ e ∈ Gen({e1, ..., en})}
It is straightforward to check that for any index-erasure inter-
pretation of the primitive operations ηops ∈ Γops , we have
(ηops , ηops) ∈ JΓopsK∗ because all members of Γops have well-
generated types. Hence, by Theorem 1, we know that for all terms
(i.e., elements of the free model over ∆) e′1:s1, ..., e

′
m:sm:

∀(x1, x
′
1) ∈ JX〈e1〉K(e′1, ..., e′m), ...,

(xn, x
′
n) ∈ JX〈en〉K(e′1, ..., e′m).

(bMc ηops x1 ... xn, bMc ηops x′1 ... x′n) ∈ JX〈e〉K(e′1, ..., e′m)

By setting e′j = ij , and using an arbitrary element x ∈ bXc
(which we have assumed non-empty), we have, for all k, (x, x) ∈
JX〈ek〉K(i1, ..., im) since each ek is a member of the set we are
using to generate terms. Now (bMc ηops x...x, bMc ηops x...x) ∈
JXK(e) and so e ∈ Gen({e1, ..., en}).

Application to Example 3 Theorem 3 can be directly applied to
show that the type ∀t:T2. vec〈t+ t〉 → vec〈t〉 has no inhabitants.
The free model over the single index variable t is (isomorphic to)
the integers, and the sub-model generated by the index expression
t + t corresponds to the even integers. The result now follows
simply because 1 (i.e., the interpretation of t) is not an even number.

Abelian Group Indexed Types Kennedy [13] has given a general
characterisation of definability at first-order in the case of abelian
group indexing in terms of integer solutions to a set of linear
equations. Specialising Theorem 3 to the case of abelian group
indexing yields Kennedy’s characterisation.

Polymorphic Constants Theorem 3 does not apply in the case
when we have polymorphic constants. This is the case with the
polymorphic 0 : ∀s:GL1. real〈s〉 in Figure 2. Theorem 3 does
not apply because the index expression s is not generated by the
empty set: 0’s type is not well-generated. Nevertheless, it is easy
to adapt the proof of Theorem 3 to handle a polymorphic constant
like 0 by setting the relational interpretation of X to be:

JXK(e) = {(x, x) | x ∈ bXc ∧ (x = 0 ∨ e ∈ Gen({e1, ..., en}))}

The conclusion of the theorem now states that either we have
e ∈ Gen({e1, ..., en}) or bMc is the constant 0 function. This
extended theorem can now be used to give an alternative proof for
Example 8. As this example illustrates, there may be many different
models that can be used to prove a non-definability result.

Adding Index Operations Theorem 3 also does not directly ap-
ply in the case of Example 9, again because assumption that the
types of the primitive operations are all well-generated is not sat-
isfied. In this case, the assumed square root operation has type
∀s:GL1. real〈s2〉 → real〈s〉, and as we observed at the start of
this section, s is not in the set generated by s2. However, to enable
the application of the theorem, we can assume an additional index
operation −1/2, acting like square root at the index level. Now the
free model produced in the proof of the theorem is isomorphic to
the dyadic numbers with addition and halving, and the generated
sub-model consists of the dyadic rationals of the form 3k

2n . Again
there is a diversity of models that can be used to prove a single
non-definability result.

6. Logical Information Flow
We now apply our general framework to types that are indexed by
logical propositions. By including a primitive type that represents
logical truth, we can recover–through a construction due to Tse and
Zdancewic [21]–strong information flow properties of programs.
As a result of our general framework being parameterised by the
choice of equational theory, we can alter the logic that we use for
reasoning about type equality, and hence alter the information flow
properties of the system.

We first recall the concept of information flow. A function
f : A × B → C is said to not allow information to flow from
its second argument to the output if for all b, b′ ∈ B and all a ∈ A,
f(a, b) = f(a, b′). If we think of the B argument as representing
high-security information, then we have stated that f does not
allow the high-security input to flow to the low security output.
Information flow can be seen as a kind of invariance property
of programs, and so our relational interpretation of types is well
tailored to proving this kind of property.

As described by Sabelfeld and Sands [19], information flow can
be captured semantically by partial equivalence relations (PERs).
Abadi, Banerjee, Heintze and Riecke [1] built a Core Calculus for
Dependency, using a type system based around a security level
indexed monad TlA, using PERs to prove the information flow
properties. Tse and Zdancewic [21] translated Abadi et al.’s cal-
culus into System F1 translating the monadic type TlA to αl → A
for some free type variable αl, and using Reynolds’ Abstraction
Theorem to prove information flow properties. For example, if the
type variable αH represents high-level information, then the non-
interference property of the function f could be expressed by the
System F type A → (αH → B) → C. If a program cannot gen-
erate a value of type αH , then it cannot access the value of B,
and hence is insensitive to the actual value. Relationships between
security levels are captured by postulating functions αl1 → αl2
whenever l1 is a lower security level than l2.

Using algebraic indexing, we refine Tse and Zdancewic’s trans-
lation by replacing each type variableαl with a primitive type T〈φl〉
of representations of the truth of a logical proposition φl that stands
for the security level l. The relationships between security levels are
now replaced by logical entailment, so we only have functions of
type T〈φl1〉 → T〈φl2〉 when φl1 entails φl2 . We instantiate our
general relational framework to interpret T〈φ〉 as the identity rela-

1 Tse and Zdancewic’s translation did not satisfy all the properties that
they claimed, as pointed out by Shikuma and Igarashi [20]. However, this
problem is not relevant to our discussion here.

tion if φ is true and the empty relation if φ is false. We shall see that
this recovers the information flow properties of Abadi et al. and Tse
and Zdancewic.

Instantiation of the General Framework We assume a single
indexing sort prop and assume the operations and equations of
boolean algebra. Thus we have constants>,⊥ and binary operators
∧, ∨with the axioms of a bounded lattice, and a unary complemen-
tation operator ¬. We will use φ, ψ to stand for index expressions
of sort prop. We use an equational presentation of boolean algebras
to fit with our general framework, but note that we can define an
order on index expressions as φ ≤ ψ when φ = φ ∧ ψ.

We have a single primitive type T, with tyArity(T) = [prop]
and index-erasure semantics bXc = {∗}. Thus values of type
T〈φ〉 have no run-time content; their only meaning is given by the
relational semantics. For the model of the indexing theory, we take
an arbitrary boolean algebra L. The relational interpretation of the
truth representation type is JTK(x) = {(∗, ∗) | x = >}, where> is
the top element of the boolean algebra L. The primitive operations
ΓLog reflect logical consequence:

truth : T〈>〉 and : ∀p, q:prop. T〈p〉 → T〈q〉 → T〈p ∧ q〉
up : ∀p, q:prop. T〈p ∧ q〉 → T〈p〉

The combination of the TYEQ rule and the primitive up operation
allow for logical entailment to be reflected in programs: if we have
φ ≤ ψ and M : T〈φ〉 then up M : T〈ψ〉. Each of the primitive
operations has a trivial interpretation, due to the index-erasure
interpretation of T〈φ〉 as a one-element set, giving an environment
ηLog ∈ bΓc. Less trivially, we have this lemma:

Lemma 5. (ηLog , ηLog) ∈ JΓLogK∗.
Information Flow We think of logical expressions as “compos-
ite principals”. That is, propositional variables representing atomic
principals that are combined using the logical connectives. We in-
terpret “truth” for principals as stating that a principal is true when
satisfied with the current state of affairs. Thus a relationship φ ≤ ψ
indicates that satisfaction of the composite principal φ implies sat-
isfaction of the composite principal ψ. In terms of security levels,
the ordering is reversed: if a high security principal is satisfied, then
all of their subordinates must also be satisfied.

We adapt Tse and Zdancewic’s translation of Abadi et al.’s
monadic type to our setting. We define a type abbreviation TφA =
T〈φ〉 → A, where A is a type and φ is an expression of sort
prop. For every φ, we can endow the types Tφ− with the structure
of a monad. This is due to the fact that it is an instance of the
“environment” (or “reader”) monad [12]. We read the types TφA
as data of type A “protected” by the principal φ.

As a consequence of the relational interpretation given above,
it follows that if we have an index expression φ that is interpreted
as some value other than > in an index environment ρ, then for
all x, x′ ∈ bTφboolc, we have (x, x′) ∈ JTφboolKρ. Thus if a
principal is dissatisfied (i.e., φ 6= >), then data protected by this
principal is indistinguishable from any other data, and a program
cannot get access to the exact value. From this observation, and
Theorem 1, we obtain the following information flow result:

Theorem 4. Let φ and ψ be index expressions of sort prop in some
indexing context ∆, such that ψ 6≤ φ. Then for all terms:

∆; ΓLog ,Γ `M : Tφbool→ Tψbool

and all termsN1, N2 of type Tφbool,M N1
ctx
≈ M N2. Thus there

is no information flow from M ’s input to its output.

Note that if ψ ≤ φ, then it is always possible to write the iden-
tity function with this type, using the up operation. The theorem
also holds if we move to logics other than boolean logic. For exam-
ple, if our equational theory models intuitionistic logic by taking

the axioms of Heyting algebras, then the same non-flow property
for programs of type Tp∨¬pbool → T>bool holds, due to the
lack of excluded middle. If we take linear logic, then programs of
type Tp⊗pbool → Tpbool have no information flow from their
input, due to non-provability of p ` p⊗ p.

7. Distance-Indexed Types
The type system for geometry we discussed in Section 2 and Sec-
tion 4 made use of a relational interpretation of primitive types
that relates pairs of elements by some transformation if applying
the transformation to the first element of a pair yields the second.
Thus, the free theorems that we derived directly take the form of
“invariance” properties, where some equation holds between two
terms. In this section, we examine another instantiation of our gen-
eral framework that relates values when they are within a certain
distance. The free theorems that we obtain inform us of the effect
that programs have on the distances between values. For example,
a program M of type:

∀ε1, ε2:R>0. real〈ε1〉 → real〈ε2〉 → real〈ε1 + ε2〉
must satisfy the property that for all ε1, ε2 > 0 and x, x′, y, y′ ∈ R:

if |x− x′| < ε1 and |y − y′| < ε2 then
|bMc ηMet x y − bMc ηMet x

′ y′| < ε1 + ε2

Instantiation of the General Framework We assume a single
indexing sort R>0 to represent positive, non-zero real numbers. For
the index operations, we assume the operations min,max,+ and
multiplication by constant reals. There is a single primitive type
real with tyArity(real) = [R>0]. The primitive operations ΓMet

are as follows, where c stands for arbitrary real-valued constants:

c : ∀ε:R>0. real〈ε〉
(+) : ∀ε1, ε2:R>0. real〈ε1〉 → real〈ε2〉 → real〈ε1 + ε2〉
(−) : ∀ε1, ε2:R>0. real〈ε1〉 → real〈ε2〉 → real〈ε1 + ε2〉
c∗ : ∀ε:R>0. real〈ε〉 → real〈cε〉
up : ∀ε1, ε2:R>0. real〈ε1〉 → real〈max(ε1, ε2)〉

We assume that the index-erasure semantics of the real type is
just the set R, so all except the last operation have straightforward
interpretations. The up operation is interpreted just as the identity
function. The index-erasure interpretations of the primitive opera-
tions are collected together into an environment ηMet ∈ bΓMetc.

For the relational intepretation we construct a model of the in-
dexing theory by interpreting R>0 with strictly positive real num-
bers. We set JrealK(ε) = {(x, x′) | |x− x′| < ε}.
Lemma 6. (ηMet , ηMet) ∈ JΓMetK∗.

Uniform continuity Using existential types, the standard ε-δ def-
inition of uniform continuity can be expressed as ∀ε:R>0. ∃δ:R>0.
real〈δ〉 → real〈ε〉. For any program M of this type, Theorem 1
gives a free theorem that is exactly uniform continuity:

∀ε>0.∃δ>0.∀x, x′.|x−x′|<δ ⇒ |bMc ηMet x−bMc ηMet x
′|<ε

This definition differs from the ε-δ definition of (regular) continuity
by the order of quantification: there, ∀x comes before ∃δ, so the
distance δ may depend on x. We suspect that to express standard
continuity as a type would require some form of type dependency.
Chaudhuri, Gulwani and Lublinerman [8] have given a program
logic based approach to verifying the continuity of programs.

Function Sensitivity A type system with a relational interpreta-
tion that tracks distances between values has been investigated by
Reed and Pierce [17] in the setting of differential privacy. Their
system uses a linear type discipline to ensure that all programs are
c-sensitive (i.e., the distance between the outputs is no greater than
c times the distance between the inputs, for some constant c). We

can express their central concept of c-sensitivity (for functions on
the reals) as an algebraically indexed type: ∀ε:R>0. real〈ε〉 →
real〈 1

c
ε〉. Investigating the precise connection between their sys-

tem and ours is left to future work.

8. Discussion
We presented a general framework for algebraically indexed types
and instantiated it to yield novel type systems for geometry, log-
ical information flow and distance-indexed types. Our framework
further demonstrates the power of relational reasoning about typed
programs. From Theorem 1, we derived interesting free theorems,
type isomorphisms and non-definability results. We conclude with
some observations and suggestions for further work.

Further Applications and Extensions We have covered several
applications of algebraically indexed types in this paper, but there
are undoubtedly many more. Geometry for dimensions greater than
two is an obvious candidate, as are systems that are invariant un-
der different geometric groups (e.g., the Poincaré group for relativ-
ity). Mathematical Physics is particularly rich in theories that have
some notion of invariance, and it will be exciting to pin down the
precise connections between these and type systems for which an
Abstraction Theorem holds. Cardelli and Gardner describe a pro-
cess calculus that builds in 3D affine geometry [6], proving that
process behaviour is invariant under affine transformations. Distin-
guishing points from vectors provides the appropriate abstraction
barrier, and the geometric group is determined by inspecting term
syntax. It would be interesting to recast their language in terms of
our indexed types to obtain purely type-based invariance theorems.

Geometric theorem proving is another application. Harrison
[10] comments on the pervasiveness of invariance properties in this
area. Programs in our framework automatically satisfy invariance
properties, removing the need for ad hoc proofs of these facts.

Type and effect analyses use types indexed by effect annotations
with algebraic structure (e.g., sets of read/write effect labels with
an idempotent monoid structure). Benton et al. have used relational
interpretations to prove effect-dependent equivalences [4]. An ex-
tension of our framework with type-indexed types should be able to
express their effect-indexed monads and prove their equivalences.

Extending our framework with type dependency would also al-
low for further applications. For example, we could consider a type
of lists of length n, indexed by elements of the permutation group
Sn. Bernardy et al. have presented a general framework for rela-
tional reasoning and an Abstraction Theorem for dependent types
[5]. However, they work with pure type systems, which define type
equality via untyped rewriting, so it is not immediately obvious
how to integrate arbitrary equational theories into their framework.

Semantic Equality In general, the semantic equality in Defi-
nition 2 is not an equivalence relation. If the interpretations of
all primitive types are partial equivalence relations then semantic
equality is indeed an equivalence relation. However, this excludes
the geometry and distance-indexed examples. More generally, we
can consider relational interpretations that are difunctional. (A re-
lation is difunctional if whenever (x, y), (x′, y′) and (x, y′) are
in the relation then so is (x′, y).) Difunctionality is weaker than
being a PER, but still suffices to prove that semantic equality is an
equivalence relation. Hofmann [11] has used difunctional relations
in the setting of effect analyses. Difunctionality covers all our ex-
amples except distance-indexed types. Note that for both PERs and
difunctional relations we need to close the relational interpretation
of existential types under the appropriate property to ensure that all
types are interpreted as PERs/difunctional relations. For distance-
indexed types it is possible that a new notion of equivalence based
on closeness is required.

Acknowledgements
The authors would like to thank Nick Benton, Kenneth MacKenzie,
John Reppy and Martin Will for illuminating discussions on geom-
etry and types. Atkey and Johann were supported by EPSRC grant
EP/G068917/1.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A Core Calculus

of Dependency. Proceedings, POPL, pp.147-160, 1999.
[2] R. Atkey. Syntax for Free: Representing Syntax with Binding Using

Parametricity. Proceedings, TLCA, pp. 35-49, 2009.
[3] N. Benton, C.-K. Hur, A. J. Kennedy, C. McBride. Strongly Typed

Term Representations in Coq. Journal of Automated Reasoning 49(2),
pp. 141-159, 2012.

[4] N. Benton, A. Kennedy, M. Hofmann, L. Beringer. Reading, Writing
and Relations. Proceedings, APLAS, pp. 114-130, 2006.

[5] J.-P. Bernardy, P. Jansson, R. Paterson. Proofs for Free: Parametricity
for Dependent Types. Journal of Functional Programming 22(2), pp.
107-152, 2012.

[6] L. Cardelli, P. Gardner. Processes in Space. Programs, Proofs,
Processes: Proceedings, CiE, pp. 78-87, 2010.

[7] Computational Geometry Algorithms Library (CGAL): User and
Reference Manual. Available at http://www.cgal.org.

[8] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity Analysis
of Programs. Proceedings, POPL, pp. 57-70, 2010.

[9] J. Gallier. Geometric Methods and Applications For Computer Science
and Engineering. Springer, 2011.

[10] J. Harrison. Without Loss of Generality. Proceedings, TPHOLs, pp.
43-59, 2009.

[11] M. Hofmann. Correctness of Effect-based Program Transformations.
Formal Logical Methods for System Security and Correctness, pp.
149-173, 2008.

[12] M. P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. Proceedings, AFP, pp. 97-136, 1995.

[13] A. J. Kennedy. Relational Parametricity and Units of Measure.
Proceedings, POPL, pp. 442-455, 1997.

[14] A. J. Kennedy. Types for Units-of-Measure: Theory and Practice.
Central European Functional Programming school (CEFP), pp. 268–
305, LNCS vol. 6299, 2010.

[15] S. Mann, N. Litke, T. DeRose. A Coordinate Free Geometry ADT.
Technical Report CS-97-15, University of Waterloo, 1997.

[16] A. M. Pitts. Parametric Polymorphism and Operational Equivalence.
Mathematical Structures in Computer Science 10(3), pp. 321-359,
2000.

[17] J. Reed and B. C. Pierce. Distance Makes the Types Grow Stronger.
Proceedings, ICFP, pp. 157-169, 2010.

[18] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism.
Information Processing 83, pp. 513-523, 1983.

[19] A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow
in Sequential Programs. Higher-Order and Symbolic Computation 14
(1), pp. 59-91, 2001.

[20] N. Shikuma and A.Igarahsi. Proving Noninterference by a Fully
Complete Translation to the Simply Typed lambda-calculus. Logical
Methods in Computer Science 4(3), 2008.

[21] S. Tse and S. Zdancewic. Translating Dependency into Parametricity.
Proceedings, ICFP, pp. 115-125, 2004.

[22] P. Wadler. Theorems for Free!. Proceedings, FPCA, pp. 347-359,
1989.

	Introduction
	Contributions
	Structure of paper

	Geometry via Algebraically Indexed Types
	Origin Invariance and Representation Independence
	A Type System for Change of Origin Invariance
	Affine and Vector Operations
	Change of Basis Invariance
	Scale Invariance and Dimensional Analysis

	A General Framework
	Algebraically-Indexed Types
	Substitution of Index Expressions
	Index Expression Equality and Type Equality

	Well-typed terms
	Index-Erasure Semantics
	The Relational Interpretation of Types
	The Abstraction Theorem and Semantic Equivalence

	Geometric Consequences of Abstraction
	Free Theorems
	Type Isomorphisms
	Non-definability

	Non-definability for the General Framework
	Logical Information Flow
	Distance-Indexed Types
	Discussion

