Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Automatic test-data generation : an immunological approach

Liaskos, K. and Roper, M. (2007) Automatic test-data generation : an immunological approach. In: TAIC PART 2007 - Testing Academic and Industrial Conference - Practice and Research Techniques. IEEE, Los Alamitos, pp. 77-81. ISBN 9780769529844

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In previous research, we presented an approach to automatically generate test-data for object-oriented software exploiting a Genetic Algorithm (GA) to achieve high levels of data-flow coverage. The experimental results from testing six Java classes helped us identify a number of problematic test targets, and suggest that in the future full data-flow coverage with a reasonable computational cost may be possible if we overcome these obstacles. To this end, the investigation of Artificial Immune System (AIS) algorithms was chosen. This paper provides a brief summary of our previous work and an introduction to both Human and Artificial Immune System. We then suggest a framework for the application of AIS algorithms to the problem of automated testing, followed by some thoughts on why and how these algorithms can be beneficial in our effort to improve the performance of our previously implemented GA. Finally, our preliminary results from a proof-of-concept implementation are presented.