Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Tetrahydrobiopterin and electron transfer in NO synthase

Daff, Simon and Gazur, Ben and Papale, Davide and McInnes, Craig and Morthala, Raghavendar R. and Gibson, Colin L. and Suckling, Colin J. (2012) Tetrahydrobiopterin and electron transfer in NO synthase. Nitric Oxide: Biology and Chemistry, 27 (supple). S5-S5. ISSN 1089-8603

Full text not available in this repository. (Request a copy from the Strathclyde author)


Mammalian NO synthase requires the cofactor tetrahydrobiopterin (H4B) to act as an electron donor during the activation of molecular oxygen at the heme site. After donating an electron, the resultant H4B radical is then required to abstract an electron from the ferrous NO complex, which is generated at the end of the catalytic reaction, in order to facilitate NO release. We have recently explored the structural requirements of NO synthase for the H4B cofactor by studying a range of novel cofactor analogues with highly modified structures. Substituents on the C6 and C7 positions of H4B are tolerated well, with surprisingly bulky pterins being able to bind and drive NO synthesis. The modified pterins have a wide range of activities and binding constants, but the main function of the cofactors in activating molecular oxygen appears to be independent of C6 and C7 modification as shown by rapid reaction studies. We have also assessed the possibility of direct electron transfer across the dimer interface between H4B molecules in the two NO synthase subunits. The H4B cofactors are within the range for facile electron transfer and present a possible mechanism for NO synthase to escape from the unreactive ferrous-NO complex, which is known to originate from product inhibition.