Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Global search for stable screw dislocation cores in III-N semiconductors

Kraeusel, Simon and Hourahine, Benjamin (2012) Global search for stable screw dislocation cores in III-N semiconductors. Physica Status Solidi A, 209 (1). pp. 71-74. ISSN 1862-6300

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The promise of the broad range of direct band gaps of the {Al,Ga,In}N system is limited by the crystal quality of current material. As grown defect densities of InN, when compared with the more mature GaN, are extremely high and InN is strongly influenced by these defects. This is particularly important due to the unusual position of the charge neutrality level of InN, leading to both the well known surface charge accumulation and difficulties in p-type doping. While impurities and native defects clearly impact on the bulk carrier density in InN, the effects of threading dislocations on the electrical properties are still in dispute. Issues such as whether the dislocation line is charged or contains dangling bonds remain open. We present the results of a global search for possible dislocation core reconstructions for a range of screw dislocations in wurtzite III-N material, utilizing empirical Stillinger-Weber inter-atomic potentials. In addition we investigate a wide range of non-stoichiometric core structures.