Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Spectral and photocatalytic characteristics of TiO2CVD films on quartz

Mills, A. and Lee, S. and Lepre, A. and Parkin, I.P. and O'Neill, S.A. (2002) Spectral and photocatalytic characteristics of TiO2CVD films on quartz. Photochemical and Photobiological Sciences, 1 (11). pp. 865-868. ISSN 1474-905X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A series of novel CVD films of titanium(IV) oxide of different thicknesses, spanning the range 10-91 nm, are prepared on quartz, via the reaction of titanium(IV) chloride and ethyl acetate, using a CVD technique. The films are clear, mechanically robust and comprise thin layer of nanocrystalline anatase titania of different thicknesses that absorb UV light. The UV-Visible spectral profiles of all the CVD TiO2 films of different thickness are the same and obey Lambert's law (absorbance film thickness). A plot of the reciprocal length for the TiO2 coating versus wavelength is reported. The photocatalytic activity of each film to mediate the destruction of a thin layer of stearic acid is investigated. The rate depends directly upon the fraction of light absorbed and the apparent quantum yield for the overall process is 0.00035, which appears low compared with that for sol-gel TiO2 films.