Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light

Clarke, Patrick and Collins, Robert and Dunjko, Vedran and Andersson, Anna Erika and Jeffers, John and Buller, G.S. (2012) Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nature Communications, 3. ISSN 2041-1723

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way’ mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.