Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach

Kemp, A. and Valentine, G.J. and Hopkins, J.M. and Hastie, J.E. and Smith, S.A. and Calvez, S. and Dawson, M.D. and Burns, D. (2005) Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics, 41 (2). pp. 148-155. ISSN 0018-9197

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The use of crystalline heatspreaders to improve thermal management in optically pumped vertical-external-cavity surface-emitting lasers is studied via finite-element analysis. The required properties of a heatspreader are examined and the effect on heat flow is discussed, as are thermal lensing effects. The advantages of diamond heatspreaders are highlighted. The power-scaling potential is compared to other approaches. Heatspreaders are found to be promising, particularly for use with low thermal conductivity semiconductors.