Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach

Kemp, A. and Valentine, G.J. and Hopkins, J.M. and Hastie, J.E. and Smith, S.A. and Calvez, S. and Dawson, M.D. and Burns, D. (2005) Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics, 41 (2). pp. 148-155. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of crystalline heatspreaders to improve thermal management in optically pumped vertical-external-cavity surface-emitting lasers is studied via finite-element analysis. The required properties of a heatspreader are examined and the effect on heat flow is discussed, as are thermal lensing effects. The advantages of diamond heatspreaders are highlighted. The power-scaling potential is compared to other approaches. Heatspreaders are found to be promising, particularly for use with low thermal conductivity semiconductors.