Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Model-based fault detection and isolation for wind turbine

Hwas, Abdulhamed Moh Suliman and Katebi, Reza (2012) Model-based fault detection and isolation for wind turbine. In: Proceedings of the 2012 UKACC International Conference on Control (CONTROL). IEEE, pp. 876-881. ISBN 978-1-4673-1559-3

[img] PDF (Model-based Fault Detection and Isolation for Wind Turbine)
Model_based_Fault_Detection_and_Isolation_for_Wind_Turbine.pdf - Final Published Version

Download (611kB)


In this paper, a quantitative model based method is proposed for early fault detection and diagnosis of wind turbines. The method is based on designing an observer using a model of the system. The observer innovation signal is monitored to detect faults. For application to the wind turbines, a first principles nonlinear model with pitch angle and torque controllers is developed for simulation and then a simplified state space version of the model is derived for design. The fault detection system is designed and optimized to be most sensitive to system faults and least sensitive to system disturbances and noises. A multiobjective optimization method is then employed to solve this dual problem. Simulation results are presented to demonstrate the performance of the proposed method.