Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Efficient Gaussian process based on BFGS updating and logdet approximation

Leithead, W.E. and Zhang, Y. and Leith, D.J. (2005) Efficient Gaussian process based on BFGS updating and logdet approximation. In: Proceedings of the 16th IFAC World Congress, 2005. UNSPECIFIED, p. 217. ISBN 978-3-902661-75-3

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Gaussian process (GP) is a Bayesian nonparametric regression model, showing good performance in various applications. However, its hyperparameterestimation procedure suffers from numerous covariance-matrix inversions of prohibitively O(N3) operations. In this paper, we propose using the quasi-Newton BFGS O(N2)-operation formula to update recursively the inverse of covariance matrix at every iteration. As for the involved log det computation, a power-series expansion based approximation and compensation scheme is proposed with only 50N2 operations. A number of numerical tests are performed based on the 2D- sinusoidal regression example and the Wiener-Hammerstein identification example. It is shown that by using the proposed implementation, more than 80% O(N3) operations are eliminated, and the speedup of 5 - 9 can be achieved.