Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Composition of biochemical networks using domain knowledge

Goodfellow, Martin and Wilson, John and Hunt, Ela (2010) Composition of biochemical networks using domain knowledge. In: COmputational Modeling in BIology NEtwork (COMBINE) 2010. Nature Precedings.

[img]
Preview
PDF
npre20104966_1.pdf - Preprint

Download (5MB) | Preview

Abstract

Graph composition has applications in a variety of practical applications. In drug development, for instance, in order to understand possible drug interactions, one has to merge known networks and examine topological variants arising from such composition. Similarly, the design of sensor nets may use existing network infrastructures, and the superposition of one network on another can help with network design and optimisation. The problem of network composition has not received much attention in algorithm and database research. Here, we work with biological networks encoded in Systems Biology Markup Language (SBML), based on XML syntax. We focus on XML merging and examine the algorithmic and performance challenges we encountered in our work and the possible solutions to the graph merge problem. We show that our XML graph merge solution performs well in practice and improves on the existing toolsets. This leads us into future work directions and the plan of research which will aim to implement graph merging primitives using domain knowledge to perform composition and decomposition on specific graphs in the biological domain.