Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer

Seib, Friedrich Philipp and Pritchard, Eleanor M. and Kaplan, David L. (2013) Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Advanced Functional Materials, 23 (1). 58–65. ISSN 1616-301X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Standard care for early stage breast cancer includes tumor resection and local radiotherapy to achieve long-term remission. Systemic chemotherapy provides only low locoregional control of the disease; to address this, self- assembling silk hydrogels that can retain and then deliver doxorubicin locally are described. Self-assembling silk hydrogels show no swelling, are readily loaded with doxorubicin under aqueous conditions, and release drug over 4 weeks in amounts that can be fine-tuned by varying the silk content. Fol- lowing successful in vitro studies, locally injected silk hydrogels loaded with doxorubicin show excellent antitumor response in mice, outperforming the equivalent amount of doxorubicin delivered intravenously. In addition to reducing primary tumor growth, doxorubicin-loaded silk hydrogels reduce metastatic spread and are well tolerated in vivo. Thus, silk hydrogels are well suited for the local delivery of chemotherapy and provide a promising approach to improve locoregional control of breast cancer.