Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Impact of processing parameters on the haemocompatibility of Bombyx mori silk films

Seib, F Philipp and Maitz, Manfred F and Werner, Carsten and Kaplan, David L (2012) Impact of processing parameters on the haemocompatibility of Bombyx mori silk films. Biomaterials, 33 (4). pp. 1017-1023.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Silk has traditionally been used for surgical sutures due to its lasting strength and durability; however, the use of purified silk proteins as a scaffold material for vascular tissue engineering goes beyond traditional use and requires application-orientated biocompatibility testing. For this study, a library of Bombyx mori silk films was generated and exposed to various solvents and treatment conditions to reflect current silk processing techniques. The films, along with clinically relevant reference materials, were exposed to human whole blood to determine silk blood compatibility. All substrates showed an initial inflammatory response comparable to polylactide-co-glycolide (PLGA), and a low to moderate haemostasis response similar to polytetrafluoroethylene (PTFE) substrates. In particular, samples that were water annealed at 25 °C for 6 h demonstrated the best blood compatibility based on haemostasis parameters (e.g. platelet decay, thrombin-antithrombin complex, platelet factor 4, granulocytes-platelet conjugates) and inflammatory parameters (e.g. C3b, C5a, CD11b, surface-associated leukocytes). Multiple factors such as treatment temperature and solvent influenced the biological response, though no single physical parameter such as β-sheet content, isoelectric point or contact angle accurately predicted blood compatibility. These findings, when combined with prior in vivo data on silk, support a viable future for silk-based vascular grafts.