Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser

Hastie, J.E. and Hopkins, J.M. and Calvez, S. and Jeon, C.W. and Burns, D. and Abram, R.H. and Riis, E. and Ferguson, A.I. and Dawson, M.D. (2003) 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 15 (7). pp. 894-896. ISSN 1041-1135

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the power scaling of a diode-pumped GaAs-based 850-nm vertical external-cavity surface-emitting laser, by use of an intracavity silicon carbide (SiC) heatspreader optically contacted to the semiconductor surface. To our knowledge, this is the first demonstration of bonding of SiC to a III-V semiconductor structure using the technique of liquid capillarity. High output power of >0.5 W in a circularly symmetric, TEM/sub 00/ output beam has been achieved with a spectral shift of only 0.6 nm/W of pump power. No thermal rollover was evident up to the highest pump power available, implying significant further output-power scaling potential using this approach.