Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser

Hastie, J.E. and Hopkins, J.M. and Calvez, S. and Jeon, C.W. and Burns, D. and Abram, R.H. and Riis, E. and Ferguson, A.I. and Dawson, M.D. (2003) 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 15 (7). pp. 894-896. ISSN 1041-1135

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report the power scaling of a diode-pumped GaAs-based 850-nm vertical external-cavity surface-emitting laser, by use of an intracavity silicon carbide (SiC) heatspreader optically contacted to the semiconductor surface. To our knowledge, this is the first demonstration of bonding of SiC to a III-V semiconductor structure using the technique of liquid capillarity. High output power of >0.5 W in a circularly symmetric, TEM/sub 00/ output beam has been achieved with a spectral shift of only 0.6 nm/W of pump power. No thermal rollover was evident up to the highest pump power available, implying significant further output-power scaling potential using this approach.