Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The ac Stark effect in nitric oxide induced by rapidly swept continuous wave quantum cascade lasers

Duxbury, Geoffrey and Kelly, James F. and Blake, Thomas A. and Langford, Nigel (2012) The ac Stark effect in nitric oxide induced by rapidly swept continuous wave quantum cascade lasers. Journal of Chemical Physics, 136 (17). ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A large ac Stark effect has been observed when nitric oxide, at low pressure in a long optical path (100 m) Herriot cell, is subjected to infrared radiation from a rapidly swept, continuous wave infrared quantum cascade laser. As the frequency sweep rate of the laser is increased, an emission signal induced by rapid passage occurs after the laser frequency has passed through the resonance of 1-0 R(11.5)(3/2/)molecular absorption line. At very high sweep rates a laser field-induced splitting of the absorptive part of the signal is observed, due to the ac Stark effect. This splitting is related to the Autler-Townes mixing of the e, f lambda doublet components of the 1-0 R(11.5)(3/2) transition, which lie under the Doppler broadened envelope.