Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Temperature dependent solid-state proton migration in dimethylurea–oxalic acid complexes

Jones, Andrew O. F. and Lemee-Cailleau, Marie-Helene and Martins, David M. S. and McIntyre, Garry J. and Oswald, Iain D. H. and Pulham, Colin R. and Spanswick, Christopher K. and Thomas, Lynne H. and Wilson, Chick C. (2012) Temperature dependent solid-state proton migration in dimethylurea–oxalic acid complexes. Physical Chemistry Chemical Physics, 14 (38). pp. 13273-13283. ISSN 1463-9076

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The phenomenon of solid-state proton migration within molecular complexes containing short hydrogen bonds is investigated in two dimethylurea-oxalic acid complexes. Extensive characterisation by both X-ray and neutron diffraction shows that proton migration along the hydrogen bond can be induced in these complexes as a function of temperature. This emphasises the subtle features of the hydrogen bond potential well in such short hydrogen bonded complexes, both intrinsically and in the effect of the local crystalline environment. Based on these findings, the synthesis and analysis of a series of solid-state molecular complexes is shown to be a potential route to designing materials with tuneable proton migration effects.