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Abstract 

A short section of photonic crystal fibre has been used for ultra-short pulse 

compression. The unique optical properties of this novel medium in terms of high non-

linearity and relatively small group velocity dispersion are shown to provide an ideal 

platform for the standard fibre pulse compression technique used directly on the nano-

Joule output pulses from a commercial laser system. We report an order of magnitude 

reduction of the pulse width to 25 fs FWHM but predict a substantially improved 

performance with a dedicated fibre design. Good agreement is obtained with a simple 

model for the spectral broadening in the fibre.  
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1. Introduction 

The non-linear optical properties exhibited by optical fibres have been studied widely. 

Observed effects include four-wave mixing, stimulated Raman and Brillouin scattering, cross-

phase modulation and self-phase modulation [1]. The latter of these is conceptually the 

simplest, relying only on the Kerr non-linearity of the medium. Manifestations of this effect 

include soliton formation [2], pulse compression [3,4] and additive pulse mode-locking [5]. 

Although the non-linear susceptibility of fused silica is very small, these effects arise from the 

small mode area and long interaction lengths available with state-of-the-art optical fibres.   

Of particular interest for the present work is the development of techniques for optical 

pulse compression. The key step here is to take advantage of the ability of the wider bandwidth 

generated by self-phase modulation to support a shorter pulse. A range of implementations 

have been reported using ordinary step-index fused silica single mode fibre as the non-linear 

medium. The combination of the self-phase modulation and a positive group velocity dispersion 

in the fibre results in a spectrally broadened and stretched output pulse with an almost linear 

frequency chirp across it. By introducing the correct amount of negative dispersion the various 

frequency components of the pulse can then be made to catch up with each other in time to 

produce a pulse substantially shorter than the original one. Indeed, compression factors of 

about two orders of magnitude have been reported [6] as well as output pulses of only a few fs 

[7]. The required negative dispersion is obtained from either a pair of diffraction gratings, a 

prism pair, or a combination of the two.   

A common feature with the reported implementations of ultra-short pulse compression 

based on standard silica fibre is the need for pulse energies significantly higher than what is 

generally obtained directly from a mode-locked laser source. Thus, the record-breaking few fs 

pulses have been generated from complex low repetition rate amplified or cavity dumped 
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systems. A notable exception to this is a recent report [8] on pulse compression of the direct 

output of a laser source by a factor of 3 � 6 using a short section of photonic crystal fibre 

(PCF). With a mode diameter of only 1.7 ȝm this fibre is highly non-linear.  

A similar technique has recently been reported used for compressing the high power 

(60 W) output of a mode-locked Yb:YAG thin disk laser [9]. In this case a large mode area fibre 

design (diameter of 16 ȝm) was chosen to avoid optical damage of the fibre. Although pulse 

widths as low as 33 fs were observed this choice of fibre has a slight disadvantage of not 

providing control of the group velocity dispersion.  

The pulse lengths reported from a PCF based compressor do not yet compete with 

those from conventional amplified systems or indeed from highly specialised sub-10 fs laser 

sources.  However, the PCF system has the clear advantage of being a simple and versatile 

add-on to standard commercial lasers operating in the few hundred fs regime.  

In this paper we report on an order of magnitude reduction in the pulse width of the 

output of a commercial Ti:Sapphire laser using a short section of PCF. A model is developed 

for the process showing that the unique properties of the fibre in terms of high non-linearity and 

low dispersion combine to give ideal conditions for ultra-short pulse compression. This result 

and the described potential for further significant improvements through a dedicated fibre 

design demonstrate that this technique may provide a simple and effective route to the few 

femto-second regime where the direct operation of a laser is significantly more challenging.  

 

2. Photonic crystal fibre 

The development of the photonic crystal fibre [10] has brought renewed interest to the field of 

non-linear fibre optics. PCFs are micro-structured fibres, where the light is guided by a number 
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of periodically arranged air holes extending the length of the fibre. These holes create a 

photonic bandgap in the transverse dimension resulting, for instance, in fibres that are single-

mode throughout the visible range [11]. The superior guiding property also allows for a 

reduction in the core diameter down to a few microns, leading to a significant increase in the 

propagating peak intensity. This is of obvious benefit in the study of non-linear effects, but just 

as significant is the fact that the exact nature of the micro-structure determines the group 

velocity dispersion (GVD) of the fibre. Typically, the zero-dispersion point, Ȝ0, in a 1 � 2 ȝm 

diameter PCF is shifted from the bulk silica value of around 1270 nm down to 600 � 800 nm 

[12,13]. This means that it is now possible to have a fibre with anomalous dispersion at a 

convenient input wavelength to accommodate a wider range of commercially available laser 

sources, such as the Ti:Sapphire laser.    

The most spectacular manifestation of this high non-linearity in an anomalously 

dispersive regime is the generation of a white-light supercontinuum extending well over an 

optical octave [12]. The detailed mechanisms involved in the supercontinuum generation are 

complicated [14] but the key is the ability to form solitons at wavelengths above the zero-point 

for the group velocity dispersion. The associated and well-known effects of soliton self-

frequency shift and shedding of energy to shorter wavelengths due to third-order dispersion 

provide the broadening, while four-wave mixing tends to fill in any remaining gaps [14]. The 

notable feature of the PCF is that the small mode area brings extreme prominence to these 

otherwise often subtle effects. 

The situation is far simpler for wavelengths below the zero-point for the group velocity 

dispersion. The normal dispersion prevents soliton formation, leaving self-phase modulation as 

the main non-linear effect. This is the basis for the PCF pulse compressors reported previously 

[8,9] and investigated further in this paper.  

 4



 

3. Experimental set-up 

A schematic of the experimental set-up is shown in Fig. 1. The commercial Ti:Sapphire laser 

(Coherent Mira 900-F) emits an 80 MHz train of pulses in the region 720 � 880 nm. The pulse 

width was measured to be ~250 fs with an interferometric autocorrelation trace consistent with 

a sech2 pulse shape. This light is focused into a length of PCF. The output is collimated and 

passed through a dispersion compensating stage consisting of two parallel 600 lines/mm 

gratings separated by 2 � 12 mm. The first grating is at normal incidence. This grating pair 

introduces a negative dispersion in the beam of ( ) 0
2 mps463.0 b× , where b0 is the separation 

between the gratings [15]. The light is then sent to an autocorrelator set up as a Michelson 

interferometer with one arm sweeping ~2 mm at a rate of ~1Hz. The combined beam is 

focused onto an GaAsP photo diode, which has only a two-photon response at wavelengths in 

the 800 nm region [16]. Low dispersion mirrors are used throughout the set-up and the beam 

splitter in the autocorrelator is a 0.5 mm thick glass plate with a ~50% reflectivity coating. The 

autocorrelation signal is sampled for every ~14 nm change in the path length difference of the 

two arms. 

The photonic crystal fibre is manufactured by Crystal Fibre A/S. It is made of pure silica 

and has a hexagonal structure of air holes to guide the light in a 2.6 µm diameter core. The 

distance between adjacent air holes is 1.8±0.2 µm and the hole size to separation ratio is 0.35. 

This structure gives rise to a high non-linearity and a zero dispersion point around 900 nm. The 

fibre therefore has a low and positive dispersion throughout the normal Ti:Sapphire operating 

range. The dispersion is estimated to be 50 ps/nm·km at 800 nm. An almost identical fibre has 

been used to demonstrate supercontinuum generation in the 700-1200 nm range [17]. 

 5



 

3.1 Spectral broadening in PCF 

First we consider the spectral broadening properties of the fibre. Fig. 2 shows an example of 

the spectrum of the output of the fibre with 188 mW of light transmitted through 86 mm of fibre 

(representing a transmission of 61%). This corresponds to a pulse energy of ~2.35 nJ. The 

laser wavelength is 830 nm. The spectrum shows the multi-peak structure characteristic of self-

phase modulation with a broadening to 38 THz. The spectral bandwidth is observed to increase 

linearly with the power transmitted through the fibre as shown in Fig. 3.  

In order to gain a better understanding of the spectral broadening process we have 

modelled the propagation of a pulse through the fibre. Assuming a sech2 laser pulse the electric 

field is given by: 

 ( ) ( ) ( )( )021ln2hsecexp TttitE in +−= ω  (1) 

where Ȧ is the laser frequency and T0 the FWHM of the pulse.  

The self-phase modulation introduces an intensity dependent phase shift: 

 ( ) ( ) ( )0max ItItnl ϕϕ =  (2) 

where I(t) is the propagating intensity distribution and the maximum phase, ĳmax, is proportional 

to the length of the fibre and its non-linearity. This rapid variation of the phase across the pulse 

results in a chirp of the frequency, but no temporal broadening. 

In the absence of any dispersion in the fibre the output spectrum is determined simply 

as the Fourier transform of ( ) ( )[ ]titE nlin ϕexp . This spectrum has a number of maxima which for 
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large values of ĳmax is approximately equal to πϕmax2
1 + , while the overall bandwidth of the 

output is proportional to ĳmax /T0 [1]. The dotted curve in Fig 2 shows a close match to the 

experimental data assuming a maximum phase of 8.8 ʌ and a pulse length of 315 fs. This is 

significantly longer than the measured pulse width. This discrepancy is due to the fact that the 

experiment operates slightly into the region of normal dispersion. Hence, as the pulse 

propagates through the fibre and the spectrum broadens, the temporal profile of the pulse also 

broadens, resulting in an overall decrease in the spectral width. We have modelled this using a 

split-step Fourier technique [1] assuming a group velocity dispersion of 20 ps/nm·km  for an 86 

mm long fibre. At this relatively low group velocity dispersion, the qualitative features of a 

spectrum broadened by self-phase modulation are still dominant. The two main effects on the 

output spectrum of the introduction of the GVD in the calculation is a slight reduction in the 

bandwidth of the broadened pulse (by ~17% in this case) and a flattening of the central part of 

the spectrum compared with the pure self-phase modulation spectrum. This is in qualitative 

agreement with the experimental data as presented in Fig. 2, where the simulated output 

spectrum is shown for a 270 fs pulse propagated through 86 mm of the 20 ps/nm·km  fibre, with 

a maximum phase modulation per unit length ǻĳmax/ǻL of 1.10 ʌ/cm.  

The dispersive properties for the fibres used in this work are not known accurately. For 

simplicity and in order to not introduce any more free unknown parameters in the model all the 

simulations presented in this paper assume a wavelength independent value for the dispersion. 

While not strictly correct this approximation does reproduce the qualitative features observed in 

the experiment. The main effect of the introduction of a linearly varying dispersion of a realistic 

magnitude in the model is that it then predicts the slight asymmetry in the spectrum apparent in 

Fig. 2.   
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The maximum phase can also be determined from first principles. It can be expressed 

as [1]: 

 ǻĳmax /ǻL =  Ȗ P0, (3) 

where P0 the peak power in the pulse and  

 

effA

n

λ
π

γ 22
=  (4) 

Aeff is the effective mode area in the fibre and n2 the non-linear refractive index. Assuming Aeff is 

the area of a circle with diameter 2.6 ȝm and n2 = 3.0ǜ10-20 m2W-1, we find a theoretical value of 

ǻĳmax /ǻL = 1.04 ʌ/cm. This is in surprisingly good agreement with the experimental data.  

The effect of the GVD on the temporal profile is a slight stretching or flattening of the 

pulse and at the same time an almost linear frequency chirp across the central part of the 

pulse. It is this linear variation of the frequency that enables the use of the anomalous 

dispersion provided by a grating pair to compress the pulse. Fig. 4 shows the calculated input 

and output pulses for a 250 fs pulse, together with the calculated frequency chirp. 

 

3.2. Pulse compression 

The large spectral bandwidth obtainable through self-phase modulation in the photonic crystal 

fibre makes it a potentially very interesting medium for pulse compression. The non-uniform 

spectrum obviously implies that a compressed pulse will have a degree of frequency chirp and 

ringing, so we might anticipate a somewhat larger value for the time-bandwidth product for the 

compressed pulse than for the initial laser pulse.  
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The pulse compression is easily incorporated in the model by introducing negative 

dispersion after the fibre. If the output electric field from the fibre is denoted Eout(t) its intensity 

spectrum is |Eout(Ȧ)|2, where Eout(Ȧ) is the Fourier transform of Eout(t). The effect of the negative 

dispersion is a frequency dependent phase shift of the spectrum:  

 ( ) ( ) ( )( )2
0exp ωωωω −−= coutdc aiEE , (5) 

where Ȧ0 is the centre frequency and ac the introduced group delay dispersion.  

The temporal profile, Edc(t), of the compressed pulse can now be determined as the 

Fourier transform of Edc(Ȧ) and the corresponding intensity distribution is Idc(t)=|Edc(t)|
2. The 

distribution and its peak intensity are both functions of the dispersion compensation parameter 

ac. An optimum value for ac is taken to be the value, ac,opt, at which the peak intensity of the 

pulse is maximised. Fig. 4 shows the calculated profile of the pulse at the relevant optimum 

value for the particular case under consideration. The relatively low group velocity dispersion 

leads to a pulse shape similar to the zero-GVD case [15]. The pulse has a narrow central peak 

with a FWHM of 17 fs containing 75% of the pulse energy. The remaining energy is mainly in 

two side lobes immediately adjacent to the central peak. This general pulse shape is found for 

all values of ǻĳmax /ǻL above approximately 0.2 ʌ/cm. Although the width of the central peak 

varies as shown in Fig. 5, the power in the peak remains constant at 75%. Fig. 5 also shows 

the optimum dispersion compensation required as a function of ǻĳmax /ǻL. Both curves are 

approximately inversely proportional to the transmitted power.  

The power transmitted through the fibre was varied in the range 50 to 215 mW. For 

each power the value of ǻĳmax /ǻL can be estimated by comparing the recorded spectrum with 

the calculated spectra. We find that ǻĳmax /ǻL is approximately 6.8 ʌ/cm per Watt of 

transmitted power.  For each power level the optimum grating separation was also determined, 
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i.e. the separation at which the autocorrelation signal was maximum. The corresponding 

anomalous dispersions are shown in Fig. 5. The data points are consistently approximately 

0.4×10-3 ps2 higher than the calculated dispersions. This is due to the model not fully 

accounting for the dispersion in the optical system. First of all it is based on an estimated value 

of 20 ps/nm·km for the fibre dispersion based on the general shape of the spectra. A value of 

30 ps/nm·km (corresponding to a group delay dispersion of 11 ps2/km) would not alter the 

spectra severely, but the additional dispersion will shift the theoretical curve up by ~0.35×10-3 

ps2. Secondly, we are operating with an up to 100 nm wide pulse centred about 70 nm away 

from zero-dispersion point, so higher order dispersion will inevitably play a role. Finally, 

dispersion in the lens used to collimate the fibre output is not accounted for in the model.   

 

3.3. Autocorrelation measurements 

In order to study the pulse shape in detail we record the interferometric autocorrelation signal 

for the pulse as described above. Fig. 6 shows an example of the recorded trace for 175 mW 

transmitted through the fibre at a wavelength of 830 nm. The grating separation was chosen to 

maximise the peak intensity or, equivalently, the autocorrelation signal. The signal displays the 

familiar symmetric shape with a peak to background ratio of 8:1. The notable difference 

compared with the familiar sech2 autocorrelation signal is the prominent structure in the wings 

due to the side lobes on the pulse. 

The autocorrelation function for a laser pulse, E(t), can be calculated as: 

 ( ) ( ) ( )( )∫
∞

∞−

Δ++=Δ dtttEtEtA
2

2
, (6) 
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where ǻt is the time delay between the two arms of the interferometer. However, there is no 

unique way of inferring the exact pulse shape from the autocorrelation signal [18]. The ratio of 

the FWHM of a pulse and the number of interference fringes across the autocorrelation trace is 

in general a function of the pulse shape. We have used the calculated profiles Edc(t) to 

determine the theoretical autocorrelation functions. Fig. 7 shows the calculated signal for the 

optimum dispersion compensation ac,opt, and the signals for ac,opt ± 10% normalised to the 

maximum signal for ac,opt. The three autocorrelation signals have the same general shape. The 

width is only weakly affected, but the amplitude drops by >35% on the 10% change in 

dispersion. At the more detailed level we observe that the structure in the wings of the 

autocorrelation signal are more prominent for ac > ac,opt. These features are also recognised in 

the experimental data shown in Fig. 8. This figure shows the recorded autocorrelation traces for 

a range of grating separations around the optimum point. 

A significant difference between the theoretical and experimental results, however, is 

the fact that the calculated signal for the 17 fs pulse has ~9 fringes at FWHM while the 

experimental signal in Fig. 6 has ~13.5. This is most likely due to our inability to implement an 

exact dispersion compensation. For bandwidth in the tens of THz range, the third order 

dispersion in both fibre and grating pair would be expected to play a significant role.  

We have calculated the FWHM for an optimally compressed pulse and the 

corresponding autocorrelation functions for a range of pulse bandwidths. We find that the ratio 

of the FWHM of a pulse and the number of interference fringes across the autocorrelation trace 

is a constant 1.84 fs/fringe or slightly larger than the ratio of 1.44 fs/fringe, that we can calculate 

for a sech2 pulse. The 13.5 fringes observed in the experimental data shown in Fig. 6 therefore 

correspond to a pulse width of 24.8 fs or an order of magnitude compression of the original 

laser pulse.  
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These measurements were carried out with a fibre length of 86 mm. This was chosen to 

be short enough that the broadened spectrum did not extend into the region of anomalous 

dispersion. If this happens we observe clear evidence, both spectrally and in the 

autocorrelation trace, that solitons start forming and the pulse breaks up. However, even before 

this happens one might expect the higher order dispersion of the combined fibre and grating 

system to be a significant limiting factor. We have not attempted to incorporate this in the 

model. 

 

3.4. The time-bandwidth product 

The time-bandwidth product is a relatively high 0.97 for the 830 nm pulses compared with 0.32 

for a sech2 pulse, 0.44 for a Gaussian pulse, and 0.66 using the results of our model. This is in 

part due to the non-linearity of the frequency chirp across the pulse. Increased dispersion in the 

fibre would tend to produce a less broadened pulse with a more linear chirp. Indeed, for a pulse 

at 810 nm we observe a 29 THz wide spectrum which compresses into a 29 fs pulse. This 

corresponds to a time-bandwidth product of 0.84.  

A longer section of fibre would also tend to linearise the chirp and result in a lower time-

bandwidth product. However, in order for this to work well the spectral broadening would also 

have to be reduced either by reducing the non-linearity of the fibre or by dropping the pulse 

energy. Two similar fibres with larger core sizes and longer zero-dispersion wavelengths were 

also used in the same set-up. Despite displaying narrower spectra and relatively longer pulses 

due to the lower non-linearity and the larger dispersion we observed an overall reduction in the 

time-bandwidth product with these fibres. For a 215 mm long fibre with a 3.5 ȝm core and a 

zero dispersion point at ~975 nm we observed a spectral width of 18 THz and a pulse width of 
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43 fs. This corresponds to a time-bandwidth product of 0.77. The even lower non-linearity of a 

200 mm section of a 4.7 ȝm core with zero dispersion at 1040 nm results in a time-bandwidth 

product of 0.73.  

 

4. Optimisation of the PCF pulse compressor 

The optimum condition for pulse compression was determined theoretically by Tomlinson et al. 

[15]. The two important fibre parameters determining the performance of a fibre compressor 

are the non-linear length LNL and the dispersion length LD: 

 

0

1

P
LNL γ

=  (7) 

 

2

2
0

β
T

LD =  (8) 

where ȕ2 is the group velocity dispersion. The optimum compression factor cc TTF 0= , where 

Tc is the duration of the compressed pulse, was found to be [15]:  

 

2

0
063.063.0

β
γ P

T
L

L
F

NL

D
c ==  (9) 

This expression immediately shows the advantage of using the photonic crystal fibre for 

the pulse compressor. The non-linearity represented by the factor Ȗ is high and the dispersion 

is relatively low, resulting in a large compression factor. The corresponding optimal fibre length 

is [15]: 
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8.0
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π
π

P

T
LLL NLDopt ==  (10) 

For the relevant fibre parameters for our experiment (Ȗ P0 = 1.1 ʌ/cm, ȕ2 ≈ 7 ps2/km, 

and T0 = 250 fs) we find that LD is approximately 9 m while LNL is a mere 2.9 mm. This leads to 

a maximum compression factor of 35, which would be obtained at a fibre length of 40 cm. The 

observed order of magnitude compression achieved with a fibre length of less than a quarter of 

this is in good qualitative agreement with this theory.  

Tomlinson et al. [15] also showed that the quality of the pulse depends on the fibre 

length and is best at Lopt. In the current experiments we observed a reduction in the time-

bandwidth product, equivalent to an improvement in the pulse quality, by going to shorter 

wavelengths. This is due to the larger ȕ2 resulting in a smaller Lopt and hence the experiment 

operated closer to the optimum condition. At the same time we expect a slight reduction in Fc 

and hence a longer compressed pulse.  

As mentioned above, we were forced to use a shorter than optimal length of fibre as the 

bandwidth of the pulse would otherwise extend into the anomalously dispersive regime. 

Assuming a time-bandwidth product of order unity we find that the bandwidth, cνΔ , at the 

output of the fibre will have to be of order: 

 

0

1

T

F

T

c

c
c =≈Δν  (11) 

With an Fc value of 35 and a 250 fs input pulse, this would correspond to a spectral broadening 

of the output in excess of 300 nm.  

 14



The high compression factor obtainable with a photonic crystal fibre is partly due to the 

relatively small group velocity dispersion. This, in turn, is at least partly due to the laser 

operating near the zero-point for the dispersion. In our experiments with the 2.6 ȝm diameter 

fibre, this is somewhat less than 2cνΔ , hence we used a shorter than optimal fibre. However, 

the dispersive properties of photonic crystal fibres can to some extent be tailored [11] offering 

the enticing prospect of designing a fibre structure optimised for pulse compression. The fibre 

would have a small and highly non-linear core and a relatively small, positive, and as near as 

possible constant group velocity dispersion over a bandwidth of a few hundred nm [19]. With 

such a design the PCF would be far superior to standard step-index fused silica fibre for the 

purpose of ultra-short pulse compression.  

 

5. Conclusion 

We have demonstrated the use of a photonic crystal fibre, in combination with a grating pair, for 

pulse compression of 250 fs Ti:Sapphire laser pulses to below 25 fs. The set-up is fairly basic 

and no attempt has been made to compensate higher order dispersion in the fibre or the 

grating pair. Even so, good qualitative agreement was obtained with a numerical model 

describing the propagation and broadening of the pulse through the fibre.  

The current experiment was carried out with a fairly standard PCF design intended for 

white-light continuum generation. The third order dispersion and the proximity to the zero-point 

for the GVD are clearly limiting factors in the experiment. However, the PCF offers the 

possibility of designing non-linear fibres with a relatively flat dispersion over a wide and 

selectable wavelength range. Indeed our model indicates that pulse compression to below 10 

fs would be achievable in such a fibre. The notable difference between this approach and one 
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based on standard silica fibre, however, is that this technique is a universally applicable add-on 

to a standard laser system and does not require further pulse amplification. Thus, this 

technique would then offer a convenient way of transforming the outputs of widely available 

commercial femtosecond laser systems to the few cycle regime, where direct operation of 

lasers is rather more involved.  

The main penalty is that 25% of the power is outside the narrow central part of the 

pulse. However, this is not significant for applications where it is mainly the peak intensity, that 

is of importance. One such application is multi-photon microscopy [20]. In this technique, two or 

more photons are absorbed simultaneously by a prepared sample and the resultant 

fluorescence is used to obtain information regarding the structural composition. One of the 

most important features of the excitation source is a sufficiently high peak power, whilst 

retaining a modest average power. The pulse compression characteristics afforded by the 

PCFs would therefore significantly enhance the capabilities of existing commercial laser 

sources for high-resolution multi-photon fluorescence microscopy.  
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Figure captions: 

Fig. 1. The Experimental set-up. The output of a mode-locked Ti:Sapphire laser is sent through 

a Faraday Isolator (FI) and coupled into a section of photonic crystal fibre (PCF). The spectrally 

broadened output is compressed by the negative dispersion of a grating pair.  The 

interferometric autocorrelation trace of the resulting pulse is recorded. 

 

Fig. 2. The spectrum of the light transmitted through 86 mm of fibre at an average transmitted 

power of 188 mW. The spectrum shows a symmetric and approximately 38 THz wide 

distribution (FWHM) with 9 individual maxima. The same width and similar structure can be 

modelled by pure self-phase modulation (dotted curve) but only for an unrealistically large initial 

pulse width of 315 fs. By including a 20 ps/nm·km group velocity dispersion in the model we 

obtain the same width and similar structure for a pulse length of 270 fs and assuming a phase 

shift on the peak of the pulse, ǻĳmax /ǻL, of 1.10 ʌ/cm (smooth solid curve).    

 

Fig. 3. The FWHM of the spectral distribution of the fibre output varies linearly with the 

transmitted power. The fibre length is 86 mm.  

 

Fig. 4. Calculated distributions for pulse compressor. The input pulse is assumed to be a 250 fs 

FWHM sech2 pulse.  The output profile and frequency deviation is calculated assuming an 86 

mm long fibre with a group velocity dispersion of 20 ps/nm·km and a phase shift on the peak of 

the pulse, ǻĳmax /ǻL, of 1.10 ʌ/cm. The intensity is normalised to the peak intensity of the input 

pulse. The almost linear chirp of the frequency across the pulse allows compression of the 
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pulse using the negative dispersion of a grating pair. The optimally compressed pulse shown 

here is ~17 fs long with ~75% of the power in the central feature. The dispersion required to 

obtain this compression is 1.22×10-3 ps2.  

 

Fig. 5. Calculated optimum dispersion for the grating pair and the corresponding length of the 

compressed pulse as a function of fibre non-linearity. The dots are the calculated values for the 

FWHM of the pulse while the solid curve is the calculated dispersion. In the absence of group 

velocity dispersion in the fibre both curves would have been hyperbolae. The squares are the 

measured dispersions for transmitted powers in the range 50 � 215 mW. The offset is due to 

the model not fully accounting for the dispersion in the system. 

 

Fig. 6. Experimentally recorded autocorrelation signal for an optimally compressed pulse at 175 

mW transmitted power. The ~13.5 fringes FWHM of this pulse corresponds to a compressed 

pulse width of 25 fs. The dispersion required for this optimum compression is 1.22×10-3 ps2. 

 

Fig. 7. Calculated autocorrelation traces for the optimum value of the grating dispersion and 

±10% of this value. The curves are normalised to a peak value of 8 for the optimal case. 

 

Fig. 8. Recorded autocorrelation traces for a range of grating separations. The data set taken 

at the optimum separation of 2.9 mm is shown in Fig. 6.  
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Figures: 

 

Fig. 1. The Experimental set-up. The output 
of a mode-locked Ti:Sapphire laser is sent 
through a Faraday Isolator (FI) and coupled 
into a section of photonic crystal fibre (PCF). 
The spectrally broadened output is 
compressed by the negative dispersion of a 
grating pair.  The interferometric 
autocorrelation trace of the resulting pulse is 
recorded. 
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detector

Disp.
Comp.

F I

 

Fig. 2. The spectrum of the light transmitted 
through 86 mm of fibre at an average 
transmitted power of 188 mW. The spectrum 
shows a symmetric and approximately 38 
THz wide distribution (FWHM) with 9 
individual maxima. The same width and 
similar structure can be modelled by pure 
self-phase modulation (dotted curve) but only 
for an unrealistically large initial pulse width 
of 315 fs. By including a 20 ps/nm·km group 
velocity dispersion in the model we obtain the 
same width and similar structure for a pulse 
length of 270 fs and assuming a phase shift 
on the peak of the pulse, ǻĳmax /ǻL, of 1.10 ʌ/cm (smooth solid curve).    
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Fig. 3. The FWHM of the spectral distribution 
of the fibre output varies linearly with the 
transmitted power. The fibre length is 86 mm.  
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Fig. 4. Calculated distributions for pulse 
compressor. The input pulse is assumed to 
be a 250 fs FWHM sech2 pulse.  The output 
profile and frequency deviation is calculated 
assuming an 86 mm long fibre with a group 
velocity dispersion of 20 ps/nm·km and a 
phase shift on the peak of the pulse, ǻĳmax 
/ǻL, of 1.10 ʌ/cm. The intensity is normalised 
to the peak intensity of the input pulse. The 
almost linear chirp of the frequency across 
the pulse allows compression of the pulse 
using the negative dispersion of a grating 
pair. The optimally compressed pulse shown 
here is ~17 fs long with ~75% of the power in the central feature. The dispersion required to 
obtain this compression is 1.22×10-3 ps2.  
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Fig. 5. Calculated optimum dispersion for the 
grating pair and the corresponding length of 
the compressed pulse as a function of fibre 
non-linearity. The dots are the calculated 
values for the FWHM of the pulse while the 
solid curve is the calculated dispersion. In the 
absence of group velocity dispersion in the 
fibre both curves would have been 
hyperbolae. The squares are the measured 
dispersions for transmitted powers in the 
range 50 � 215 mW. The offset is due to the 
model not fully accounting for the dispersion 
in the system. 
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Fig. 6. Experimentally recorded 
autocorrelation signal for an optimally 
compressed pulse at 175 mW transmitted 
power. The ~13.5 fringes FWHM of this 
pulse corresponds to a compressed pulse 
width of 25 fs. The dispersion required for 
this optimum compression is 1.22×10-3 ps2. 
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Fig. 7. Calculated autocorrelation traces for 
the optimum value of the grating dispersion 
and ±10% of this value. The curves are 
normalised to a peak value of 8 for the 
optimal case. 
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Fig. 8. Recorded autocorrelation traces for a range of grating separations. The data set taken 
at the optimum separation of 2.9 mm is shown in Fig. 6.  
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