Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Equal channel angular pressing with converging billets—experiment

Rosochowski, Andrzej and Olejnik, Lech and Richert, Jan and Rosochowska, Malgorzata and Richert, Maria (2013) Equal channel angular pressing with converging billets—experiment. Materials Science and Engineering: A, 560. pp. 358-364. ISSN 0921-5093

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new concept of equal channel angular pressing (ECAP) with converging billets is proposed and tested experimentally. In its basic configuration, the new ECAP process uses two equal square input channels converging into a single output channel, which is twice as wide as the input channels so that it can accept two converging billets. The contact surface between converging billets plays the same role as a movable die wall in the output channel of classical ECAP and thus reduces friction and the process force. The process productivity is doubled and material pickup, especially problematic in the output channel, avoided. This paper presents results of experimental trials of the new process using purposely designed tooling incorporated in a horizontal press with three hydraulic cylinders. One pass of ECAP with converging Al 1070 billets has been carried out and the resulting hardness distribution and microstructure examined. It is concluded that the new process is a feasible version of ECAP both in the engineering and the micro-structural terms, with the added benefit of doubled productivity as well as friction and force reduction.