Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Equal channel angular pressing with converging billets—experiment

Rosochowski, Andrzej and Olejnik, Lech and Richert, Jan and Rosochowska, Malgorzata and Richert, Maria (2013) Equal channel angular pressing with converging billets—experiment. Materials Science and Engineering: A, 560. pp. 358-364. ISSN 0921-5093

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new concept of equal channel angular pressing (ECAP) with converging billets is proposed and tested experimentally. In its basic configuration, the new ECAP process uses two equal square input channels converging into a single output channel, which is twice as wide as the input channels so that it can accept two converging billets. The contact surface between converging billets plays the same role as a movable die wall in the output channel of classical ECAP and thus reduces friction and the process force. The process productivity is doubled and material pickup, especially problematic in the output channel, avoided. This paper presents results of experimental trials of the new process using purposely designed tooling incorporated in a horizontal press with three hydraulic cylinders. One pass of ECAP with converging Al 1070 billets has been carried out and the resulting hardness distribution and microstructure examined. It is concluded that the new process is a feasible version of ECAP both in the engineering and the micro-structural terms, with the added benefit of doubled productivity as well as friction and force reduction.