Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Preconcentration and selective extraction of chromium species in water samples using amino modified mesoporous silica

Idris, Salah Ali Mahgoub and Alotaibi, Khalid Mohammed N and Peshkur, Tanya A. and Anderson, Peter and Gibson, Lorraine (2012) Preconcentration and selective extraction of chromium species in water samples using amino modified mesoporous silica. Journal of Colloid and Interface Science, 386 (1). pp. 344-349. ISSN 0021-9797

Full text not available in this repository. Request a copy from the Strathclyde author


Speciation and separation of chromium (VI) and chromium (III) from aqueous solutions were investigated using amino-propyl functionalised mesoporous silica (AP-MCM-41) as an adsorbent. The as-synthesised adsorbent was produced following a simple synthesis method at room temperature prior to template removal using microwave digestion. The maximum adsorption capacity at 111.1 mg/g was calculated according to the Langmuir isotherm model, suggesting a 1:1 monolayer adsorption mechanism. Moreover, AP is a simple chelate, yet it can extract Cr (VI) exclusively from solutions containing other mixed metal ions simply by tuning the solution pH. Recovery of Cr (VI) from loaded sorbents is equally easy to perform with 100% extraction efficiencies allowing reuse of the sorbent and recovery of Cr (VI) from aqueous solutions containing a complex mixture of ions. The material would find use in environmental remediation applications, as a selective adsorbent of Cr (VI) or even as a solid-phase extraction stationary phase to remove and pre-concentrate Cr (VI) from aqueous solutions; this study demonstrates enrichment factors of 100 although higher levels are also possible.