Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Analytical method for perturbed frozen orbit around an asteroid in highly inhomogeneous gravitational fields

Ceccaroni, Marta and Biscani, Francesco and Biggs, James (2012) Analytical method for perturbed frozen orbit around an asteroid in highly inhomogeneous gravitational fields. In: 2012 Analytical Methods in Celestial Mechanics, 2012-09-26 - 2012-09-29.

[img] PDF
Ceccaroni_M_et_al_Pure_Analytical_method_for_perturbed_frozen_orbit_around_an_asteroid_in_highly_inhomogeneous_graviational_fields_Sep_2012.pdf - Preprint

Download (473kB)


This article provides a method for finding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the inhomogeous body is firstly stated, in polar-nodal coordinates, which takes into account the coefficients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coeffcients. The project has been developed in collaboration with the European Space Agency (ESA).