Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Analytical method for perturbed frozen orbit around an asteroid in highly inhomogeneous gravitational fields

Ceccaroni, Marta and Biscani, Francesco and Biggs, James (2012) Analytical method for perturbed frozen orbit around an asteroid in highly inhomogeneous gravitational fields. In: 2012 Analytical Methods in Celestial Mechanics, 2012-09-26 - 2012-09-29.

[img] PDF
Ceccaroni_M_et_al_Pure_Analytical_method_for_perturbed_frozen_orbit_around_an_asteroid_in_highly_inhomogeneous_graviational_fields_Sep_2012.pdf - Draft Version

Download (473kB)

Abstract

This article provides a method for finding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the inhomogeous body is firstly stated, in polar-nodal coordinates, which takes into account the coefficients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coeffcients. The project has been developed in collaboration with the European Space Agency (ESA).