Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Interaction of counterions with subtilisin in acetonitrile : insights from molecular dynamics simulations

Lousa, Diana and Cianci, M. and Helliwell, J. and Halling, Peter and Baptista, A and Soares, Claudio (2012) Interaction of counterions with subtilisin in acetonitrile : insights from molecular dynamics simulations. Journal of Physical Chemistry B, 116 (20). 5838–5848. ISSN 1520-6106

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A recent X-ray structure has enabled the location of chloride and cesium ions on the surface of subtilisin Carlsberg in acetonitrile soaked crystals.(1) To complement the previous study and analyze the system in solution, molecular dynamics (MD) simulations, in acetonitrile, were performed using this structure. Additionally, Cl– and Cs+ ions were docked on the protein surface and this system was also simulated. Our results indicate that chloride ions tend to stay close to the protein, whereas cesium ions frequently migrate to the solvent. The distribution of the ions around the enzyme surface is not strongly biased by their initial locations. Replacing cesium by sodium ions showed that the distribution of the two cations is similar, indicating that Cs+ can be used to find the binding sites of cations like Na+ and K+, which, unlike Cs+, have physiological and biotechnological roles. The Na+Cl– is more stable than the Cs+Cl– ion pair, decreasing the probability of interaction between Cl– and subtilisin. The comparison of water and acetonitrile simulations indicates that the solvent influences the distribution of the ions. This work provides an extensive theoretical analysis of the interaction between ions and the model enzyme subtilisin in a nonaqueous medium.