Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Static highly elliptical orbits using hybrid low-thrust propulsion

Anderson, Pamela and Macdonald, Malcolm (2013) Static highly elliptical orbits using hybrid low-thrust propulsion. Journal of Guidance, Control and Dynamics, 36 (3). pp. 870-880. ISSN 0731-5090

[img]
Preview
PDF - Draft Version
Download (1662Kb) | Preview

    Abstract

    Static highly-elliptical orbits enabled using hybrid solar-sail/solar-electric propulsion are investigated. These newly proposed orbits, termed Taranis orbits, have free selection of ‘critical inclination’ and use low-thrust propulsion to compensate for the drift in argument of perigee caused by Earth’s gravitational field. In this paper, a 12-hr Taranis orbit with an inclination of 90deg is developed to illustrate the principle. The acceleration required to enable this novel orbit is made up partly by the acceleration produced by solar-sails of various characteristic accelerations, and the remainder supplied by the electric thruster. Order of magnitude mission lifetimes are determined, a strawman mass budget is also developed for two system constraints, firstly spacecraft launch-mass is fixed, and secondly the maximum thrust of the thruster is constrained. Fixing maximum thrust increases mission lifetimes, and solar-sails are considered near to mid-term technologies. However, fixing mass results in negligible increases in mission lifetimes for all hybrid cases considered, solar sails also require significant development. This distinction highlights an important contribution to the field, illustrating that addition of a solar-sail to an electric propulsion craft can have negligible benefit when mass is the primary system constraint. Technology requirements are also outlined, including sizing of solar-arrays, propellant tanks and solar sails.

    Item type: Article
    ID code: 41822
    Notes: COPYRIGHT OWNED BY AUTHOR, PAMELA ANDERSON
    Keywords: elliptical orbit, low-thrust propulsion, Taranis orbits, solar sails, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Aerospace Engineering, Computational Mechanics, Control and Systems Engineering
    Subjects: Technology > Mechanical engineering and machinery
    Technology > Motor vehicles. Aeronautics. Astronautics
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Technology and Innovation Centre > Advanced Engineering and Manufacturing
    Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 30 Oct 2012 10:59
    Last modified: 27 Mar 2014 21:26
    URI: http://strathprints.strath.ac.uk/id/eprint/41822

    Actions (login required)

    View Item

    Fulltext Downloads: