Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Static highly elliptical orbits using hybrid low-thrust propulsion

Anderson, Pamela and Macdonald, Malcolm (2013) Static highly elliptical orbits using hybrid low-thrust propulsion. Journal of Guidance, Control and Dynamics, 36 (3). pp. 870-880. ISSN 0731-5090

[img]
Preview
PDF
Anderson_P_Macdonald_M_Pure_Static_highly_eliptical_orbits_using_hybrid_low_thrust_propulsion_Aug_2012.pdf - Preprint

Download (1MB) | Preview

Abstract

Static highly-elliptical orbits enabled using hybrid solar-sail/solar-electric propulsion are investigated. These newly proposed orbits, termed Taranis orbits, have free selection of ‘critical inclination’ and use low-thrust propulsion to compensate for the drift in argument of perigee caused by Earth’s gravitational field. In this paper, a 12-hr Taranis orbit with an inclination of 90deg is developed to illustrate the principle. The acceleration required to enable this novel orbit is made up partly by the acceleration produced by solar-sails of various characteristic accelerations, and the remainder supplied by the electric thruster. Order of magnitude mission lifetimes are determined, a strawman mass budget is also developed for two system constraints, firstly spacecraft launch-mass is fixed, and secondly the maximum thrust of the thruster is constrained. Fixing maximum thrust increases mission lifetimes, and solar-sails are considered near to mid-term technologies. However, fixing mass results in negligible increases in mission lifetimes for all hybrid cases considered, solar sails also require significant development. This distinction highlights an important contribution to the field, illustrating that addition of a solar-sail to an electric propulsion craft can have negligible benefit when mass is the primary system constraint. Technology requirements are also outlined, including sizing of solar-arrays, propellant tanks and solar sails.