Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Plankton abundance and dynamics across nutrient levels : tests of hypotheses

Murdoch, W.W. and Nisbet, R.M. and McCauley, E. and de Roos, A.M. and Gurney, William (1998) Plankton abundance and dynamics across nutrient levels : tests of hypotheses. Ecology, 79 (4). pp. 1339-1356. ISSN 0012-9658

Full text not available in this repository. (Request a copy from the Strathclyde author)


In lakes and reservoirs in which Daphnia is able to suppress the biomass of edible algae far below the level set by nutrients, the interaction is stable across the range of nutrient-poor to nutrient-rich environments. This phenomenon contradicts standard con sumer-resource models, which predict that dynamics should become increasingly unstable with enrichment. We test four hypotheses that might account for stability at high-nutrient levels: (1) greater abundance of inedible algae with enrichment interferes with Daphnia's feeding; (2) Daphnia's death rate increases with enrichment; (3) Daphnia's death rate increases with Daphnia density; (4) Daphnia's functional response depends on Daphnia's density. All hypotheses are rejected because they predict much higher biomass of edible algae at high-nutrient levels than is observed. Additional evidence on Daphnia death rates strengthens the case against hypotheses (2) and (3). We consider other hypotheses and conclude that three in particular would repay further investigation. (a) Inedible algae act as a nutrient "sponge," reducing the effective carrying capacity for edible algae; (b) limited spatial movement can enhance stability through a metapopulation-like effect, and (c) stochastic variation among individuals can be stabilizing. The central problem investigated here is a general one, with implications for many consumer-resource systems.