Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Seasonal synchronicity and stage-specific life-cycles

Grist, E.P.M. and Gurney, William (1997) Seasonal synchronicity and stage-specific life-cycles. Mathematical Biosciences, 145 (1). pp. 1-25. ISSN 0025-5564

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In his study on Catops nigricans (Coleoptera: Leiodidae), Topp [1] (W. Topp, Selection for an optimal monovoltine life-cycle in an unpredictable environment: Studies on the beetle C. nigricans Spence. Oecologia 84: 134–141 (1990).) observed that the times of eclosion and oviposition of a population of this European beetle are tightly synchronized to the local seasonal environment. Topp proposed that the key mechanism producing such synchrony is the developmental response that individuals exhibit to seasonal fluctuations of temperature and light at discrete stages of their life cycle. Here, an individual-level model of the C. nigricans life cycle is constructed and parameterized with the complete set of Topp's stage-specific development data. Seasonal variations of temperature and light are replicated by sinusoidal functions of time. Simulations are carried out to investigate the temporal behavior of lineages (generated from an arbitrary cohort) exposed to these periodic environmental variations over several generations. Our results support the hypothesis that stage-specific development in a periodic environment produces a powerful mechanism by which life-cycle synchronization can occur.