Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optimal resource allocation in a randomly varying environment

Gurney, William and Middleton, D. (1996) Optimal resource allocation in a randomly varying environment. Functional Ecology, 10 (5). pp. 602-616. ISSN 0269-8463

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

1. We construct a simple strategic population model to investigate optimal allocation of resources (in excess of those required for maintenance) to growth and/or reproduction. 2. Analysis of the model for a constant environment demonstrates that determinate growth (where growth ceases at reproductive maturity) is always the optimal strategy. 3. We conduct numerical competition experiments to investigate optimal allocation in randomly varying environments, under three different noise models. 4. Indeterminate growth (simultaneous growth and reproduction over some of the individual's lifetime) is optimal in varying environments where the variability is intense and on a time-scale comparable with that of an individual's lifetime. 5. The long-run growth rate and the correlation between phenotype biomass and environment are maximized by sucessful competitors in the numerical contests. The presence of a competitor is shown to be an essential component defining the `environment'. Optimization of various fitness measures in a single phenotype situation does not reveal the optimum for the competitive situation.