Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Numerical study of propulsion mechanism for oscillating rigid and flexible tuna-tails

Yang, L. and Su, Y. M. and Xiao, Q. (2011) Numerical study of propulsion mechanism for oscillating rigid and flexible tuna-tails. Journal of Bionic Engineering, 8 (4). pp. 406-417. ISSN 1672-6529

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed. Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh. The effect of swimming speed, flapping amplitude, frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated. Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion. The propulsive efficiency has a strong correlation with various locomotive parameters. Peak propulsive efficiency can be obtained by adjusting these parameters. Particularly, when input power coefficient is less than 2.8, the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail. However, when input power coefficient is larger than 2.8, flexible tail is superior to rigid tail.