Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Numerical study of propulsion mechanism for oscillating rigid and flexible tuna-tails

Yang, L. and Su, Y. M. and Xiao, Q. (2011) Numerical study of propulsion mechanism for oscillating rigid and flexible tuna-tails. Journal of Bionic Engineering, 8 (4). pp. 406-417. ISSN 1672-6529

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Numerical study on the unsteady hydrodynamic characteristics of oscillating rigid and flexible tuna-tails in viscous flow-field is performed. Investigations are conducted using Reynolds-Averaged Navier-Stokes (RANS) equations with a moving adaptive mesh. The effect of swimming speed, flapping amplitude, frequency and flexure amplitude on the propulsion performance of the rigid and flexible tuna-tails are investigated. Computational results reveal that a pair of leading edge vortices develop along the tail surface as it undergoes an oscillating motion. The propulsive efficiency has a strong correlation with various locomotive parameters. Peak propulsive efficiency can be obtained by adjusting these parameters. Particularly, when input power coefficient is less than 2.8, the rigid tail generates larger thrust force and higher propulsive efficiency than flexible tail. However, when input power coefficient is larger than 2.8, flexible tail is superior to rigid tail.