Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Self-organisation, scale and stability in a spatial predator-prey interaction

Gurney, William and Veitch, A.R. (2000) Self-organisation, scale and stability in a spatial predator-prey interaction. Bulletin of Mathematical Biology, 62 (1). pp. 61-86. ISSN 0092-8240

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Simple predator-prey models often predict extreme instability in interactions where the prey are depressed well below their carrying capacity. Although the behaviour of some laboratory systems conforms to this pattern, field and mesocosm studies generally show prolonged co-existence of prey and predator. Prominent among the possible causes of this discrepancy are the effects of spatial heterogeneity. In this paper we show that both discrete and continuous representations of the spatial Rosenzweig-McArthur model with immobile prey can be stabilized by self-organized prey heterogeneity. This concordance of behaviour closely parallels that which we have previously established in the context of invasion waves. We use the continuous model variant to calculate the characteristic spatial scales of the self-organized structures. The discrete variant forms the basis of a simulation study demonstrating the variety of stable structures and elucidating their relation to the history of the system. We note that all stable prey distributions take the form of a network of occupied patches separated by prey-free regions, and liken the process which generates such assemblages to the formation of a landscape mozaic.