Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Identification of time-frequency EEG features modulated by force direction in arm isometric exertions

Nasseroleslami, B. and Lakany, H. and Conway, B. A. (2011) Identification of time-frequency EEG features modulated by force direction in arm isometric exertions. In: 2011 5th International IEEE/EMBS conference on neural engineering (NER). International IEEE EMBS Conference on Neural Engineering . IEEE, New York, pp. 422-425. ISBN 9781424441419

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Electroencephalographic (EEG) activity associated with human motor tasks has been studied in time domain and time-frequency representations. Various classification and decoding techniques have been used to extract movement or motor task parameters from EEG such as direction of an isometrically exerted force. Identification of time and time-frequency regions that contain the highest directional information can considerably enhance the efficiency of decoding and classification algorithms. In this paper we have addressed this issue for directional arm isometric exertions to 4 different directions in horizontal plane. We have used the non-parametric Permutational ANOVA to identify time-frequency regions capturing the highest level of inter-group variance as a measure of directional information. There are information-rich regions in delta, theta, alpha, and beta bands after corresponding visual cues. Parietal regions show higher directional information during planning compared to execution. The results can be used for pattern classification and decoding of motor parameters in Brain-Computer-Interfacing (BCI) and BCI-rehabilitation.

Item type: Book Section
ID code: 41637
Keywords: movement, statistical significance, brain-computer interfaces, time-frequency , EEG features , modulated by force direction , arm isometric exertions , Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Bioengineering
Faculty of Engineering > Biomedical Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 22 Oct 2012 17:00
    Last modified: 22 Oct 2012 17:00
    URI: http://strathprints.strath.ac.uk/id/eprint/41637

    Actions (login required)

    View Item