Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Investigation of water treatment using dielectric barrier discharge

Wang, Tao and Zhao, Yiyi and MacLean, Michelle and MacGregor, Scott and Huang, Guangming and Wilson, Mark (2012) Investigation of water treatment using dielectric barrier discharge. In: Proceedings of the XIX International Conference on Gas Discharges and Their Applications. High Voltage Engineering, Beijing, pp. 654-657.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The gas discharge was investigated for its degradation of methylene blue in aqueous solutions as an alternative to the advanced oxidation process. This, together with the microbial inactivation of Escherichia coli (E. coli) bacteria, was used to identify the potential reactive species produced. A tailor-made barrier discharge water reactor was made which incorporated micro-discharges and the gas diffusion technology to enable direct interaction between gas discharge and aqueous solutions. The barrier discharge properties and corresponding ozone production prior to and after exposure to aqueous solutions were investigated. Experimental results indicate that besides ozone, other reactive species were produced and played an important role in methylene blue degradation and E. coli inactivation. Their contribution to the methylene blue degradation increases with solution concentration and could reach more than 50% for a sample concentration of 600 mg/l. Corresponding energy efficiency as high as 0.33 µmol/J was achieved using oxygen as the source gas.