Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The dynamics of population models with distributed maturation periods

Blythe, S.P. and Nisbet, R.M. and Gurney, William (1984) The dynamics of population models with distributed maturation periods. Theoretical Population Biology, 25 (3). pp. 289-311. ISSN 0040-5809

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An integro-differential equation for the dynamics of a subpopulation of adults in a closed system where only the adults compete and where there is a distribution of maturation periods is described. We show how the careful choice of a general weighting function based on the gamma distribution with a shift in origin enables us to characterize adequately some observed maturation-period distributions, and also makes local stability and numerical analyses straightforward. Using these results we examine the progression in the behavior of the distributed-delay model as the distribution is narrowed toward the limit of a discrete delay. We conclude that while local stability properties approach those of the limiting equation very rapidly, the persistent fluctuation behavior converges more slowly, with the dominant period and maximum amplitude being least affected by the details of the distribution, and the fine structure of solutions being most sensitive. Finally, we examine the consequences for population modeling, and using several examples of insect populations, conclude that although quite often a full maturation-period distribution should be incorporated in a given model, in many cases a discrete-delay approximation will suffice.