Blythe, S.P. and Nisbet, R.M. and Gurney, William (1984) *The dynamics of population models with distributed maturation periods.* Theoretical Population Biology, 25 (3). pp. 289-311. ISSN 0040-5809

## Abstract

An integro-differential equation for the dynamics of a subpopulation of adults in a closed system where only the adults compete and where there is a distribution of maturation periods is described. We show how the careful choice of a general weighting function based on the gamma distribution with a shift in origin enables us to characterize adequately some observed maturation-period distributions, and also makes local stability and numerical analyses straightforward. Using these results we examine the progression in the behavior of the distributed-delay model as the distribution is narrowed toward the limit of a discrete delay. We conclude that while local stability properties approach those of the limiting equation very rapidly, the persistent fluctuation behavior converges more slowly, with the dominant period and maximum amplitude being least affected by the details of the distribution, and the fine structure of solutions being most sensitive. Finally, we examine the consequences for population modeling, and using several examples of insect populations, conclude that although quite often a full maturation-period distribution should be incorporated in a given model, in many cases a discrete-delay approximation will suffice.

Item type: | Article |
---|---|

ID code: | 41615 |

Keywords: | subpopulation dynamics, behaviour fluctuations, distributed-delay model, Probabilities. Mathematical statistics, Ecology, Evolution, Behavior and Systematics |

Subjects: | Science > Mathematics > Probabilities. Mathematical statistics |

Department: | Faculty of Science > Mathematics and Statistics |

Related URLs: | |

Depositing user: | Pure Administrator |

Date Deposited: | 19 Oct 2012 18:59 |

Last modified: | 05 Sep 2014 18:24 |

URI: | http://strathprints.strath.ac.uk/id/eprint/41615 |

### Actions (login required)

View Item |