Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Instability and complex dynamic behaviour in population models with long time-delays

Blythe, S. and Nisbet, R.M. and Gurney, William (1982) Instability and complex dynamic behaviour in population models with long time-delays. Theoretical Population Biology, 22 (2). pp. 147-176. ISSN 0040-5809

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Some of the properties of the delay-differential equation , where R and D represent the rates of recruitment to, and death from, an adult population of size X, with maturation period τ are examined. The biological constraints upon these recruitment and death functions are specified, and they are used to establish results on stability, boundedness, and persistent fluctuations of limit cycle type. The relationship between models based on delay-differential and difference equations is then explored, and it is shown how well-established results on period-doubling and chaotic behaviour in the latter can yield insight into the qualitative dynamics of the former. Using numerical studies of two population models with differing forms of recruitment function, we show how, by making use of our results, it is possible to simplify the analysis of delay-differential equation population models.