Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Instability and complex dynamic behaviour in population models with long time-delays

Blythe, S. and Nisbet, R.M. and Gurney, William (1982) Instability and complex dynamic behaviour in population models with long time-delays. Theoretical Population Biology, 22 (2). pp. 147-176. ISSN 0040-5809

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Some of the properties of the delay-differential equation , where R and D represent the rates of recruitment to, and death from, an adult population of size X, with maturation period τ are examined. The biological constraints upon these recruitment and death functions are specified, and they are used to establish results on stability, boundedness, and persistent fluctuations of limit cycle type. The relationship between models based on delay-differential and difference equations is then explored, and it is shown how well-established results on period-doubling and chaotic behaviour in the latter can yield insight into the qualitative dynamics of the former. Using numerical studies of two population models with differing forms of recruitment function, we show how, by making use of our results, it is possible to simplify the analysis of delay-differential equation population models.