Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback

Paulau, P. V. and Gomila, D. and Colet, P. and Malomed, B. A. and Firth, W. J. (2011) From one- to two-dimensional solitons in the Ginzburg-Landau model of lasers with frequency-selective feedback. Physical Review E, 84 (3). ISSN 1539-3755

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We use the cubic complex Ginzburg-Landau equation linearly coupled to a dissipative linear equation as a model for lasers with an external frequency-selective feedback. This system may also serve as a general pattern-formation model in media driven by an intrinsic gain and selective feedback. While, strictly speaking, the approximation of the laser nonlinearity by a cubic term is only valid for small field intensities, it qualitatively reproduces results for dissipative solitons obtained in models with a more complex nonlinearity in the whole parameter region where the solitons exist. The analysis is focused on two-dimensional stripe-shaped and vortex solitons. An analytical expression for the stripe solitons is obtained from the known one-dimensional soliton solution, and its relation with vortex solitons is highlighted. The radius of the vortices increases linearly with their topological charge m, therefore the stripe-shaped soliton may be interpreted as the vortex with m = infinity, and, conversely, vortex solitons can be realized as unstable stripes bent into stable rings. The results for the vortices are applicable for a broad class of physical systems.