Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Unequal error protection random linear coding strategies for erasure channels

Vukobratovic, Dejan and Stankovic, Vladimir (2012) Unequal error protection random linear coding strategies for erasure channels. IEEE Transactions on Communications, 60 (5). pp. 1243-1252. ISSN 0090-6778

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, we provide the performance analysis of unequal error protection (UEP) random linear coding (RLC) strategies designed for transmission of source messages containing packets of different importance over lossy packet erasure links. By introducing the probabilistic encoding framework, we first derive the general performance limits for the packet-level UEP coding strategies that encode the packets of each importance class of the source message independently (non-overlapping windowing strategy) or jointly (expanding windowing strategy). Then, we demonstrate that the general performance limits of both strategies are achievable by the probabilistic encoding over non-overlapping and expanding windows based on RLC and the Gaussian Elimination (GE) decoding. Throughout the paper, we present a number of examples that investigate the performance and optimization of code design parameters of the expanding window RLC strategy and compare it with the non-overlapping RLC strategy selected as a reference.