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ABSTRACT 

 
In this work, we report a rich sequence of elastic 

transitions captured experimentally using a viscoelastic, 
shear-thinning solution. The experiments were carried out 
in a microchannel with a sudden contraction followed by a 
smooth expansion, taking advantage of the distinctive 
conditions provided by microfluidic viscoelastic flows, i.e 
the capability of achieving high Deborah numbers (De) 
while keeping the Reynolds numbers low enough so that 
inertia does not have a significant impact. We studied the 
effect of De on the flow patterns and were able to achieve a 
flow regime, at sufficiently high De, in which the flow 
becomes unsteady with the main vortices formed upstream 
of the contraction varying in size substantially and very 
rapidly resembling what Afonso et al. [1] coined as the 
back-shedding regime. This process is accompanied by the 
formation of secondary vortices, which are shed in the 
upstream flow direction. A similar phenomenon was also 
captured by our preliminary numerical simulations 
performed using the Oldroyd-B constitutive equation.  
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1 INTRODUCTION 
 
The flow through sudden contractions is a long-standing 

problem and has been reported in numerous experimental 
and numerical works, using both Newtonian and non-
Newtonian fluids (cf. [1-9]). There are three main types of 
configuration used in sudden contraction flow research: 
axisymmetric, planar 2-D and planar 3-D geometries. The 
latter are especially relevant at the microscale as many 
microfabrication techniques yield planar channels of 
constant depth where wall effects are non-negligible. 

In spite of the simple geometry, these flows exhibit 
complex flow patterns comprising regions of strong 
shearing close to the walls and nonhomogeneous extension 
along the centerline near the contraction region [10]. One of 
the remarkable features of viscoelastic fluid entry flows is 
the formation and subsequent enhancement of vortices 
upstream of the contraction plane.  

As a consequence of miniaturization, contraction flows 
at the microscale occur under low Reynolds number (Re) 

conditions corresponding to the laminar flow regime 
[6,7,10]. Furthermore, the small length-scales and large 
contraction ratios typical of microfluidics result in  high 
extensional deformation rates and high total extensional 
strains that typically lead to strong nonlinear flow effects 
even with dilute and semidilute polymer solutions [6,7,11]. 
In particular, Rodd et al. [6,7] have studied experimentally 
the flow of various polyethylene oxide solutions through a 
16:1 contraction and have shown a series of inertio-elastic 
transitions that could not have been observed in equivalent 
experiments at the macroscale.  

In numerical terms, simulations of viscoelastic fluid 
flows through contractions are notoriously difficult at high 
Deborah numbers (De) and are usually limited to flows 
below a critical De.  Above the critical De value, the 
numerical simulations typically present mesh dependency 
problems (even with refined meshes) and are often not able 
to obtain a converged solution. Very recently, Afonso et al 
[1] used a finite volume method with the log-conformation 
formulation, originally proposed by Fattal and Kupferman 
[12] that allowed reliable numerical simulations to be 
extended to much higher Deborah numbers than in previous 
works. The results of their 2D simulations using the 
Oldroyd-B constitutive equation, showed that local flow 
unsteadiness appears at a relatively low Deborah number 
(De = 2.5) and that a subsequent increase in De leads a 
growth of the flow unsteadiness resulting in asymmetric 
flow with alternate back-shedding of vorticity from 
pulsating upstream recirculating eddies. Additionally, the 
authors report a frequency doubling mechanism, which 
eventually leads to a chaotic regime at high De. These 
numerical results were the motivation for our own 
experimental work reported here, in which we aim to 
capture experimentally the same type of flow features and 
try to understand, aided by numerical simulations, the 
mechanisms underlying the flow transitions that take place 
at high Deborah numbers. 
  

2 EXPERIMENTAL METHODS 
 

2.1 Microchannel Geometry and Set-up 

The experiments were carried out using microfabricated 
channels consisting of a sudden contraction followed by a 
smooth expansion with a nearly-hyperbolic shape. The 
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geometry is symmetric about the plane y = 0 and was 
fabricated in polydimethylsiloxane, PDMS (Sylgard 184, 
Dow Corning), from an SU-8 photoresist mold by standard 
soft-lithography techniques. The geometry produced is 
planar with a constant depth h = 45 μm and is depicted in 
Fig. 1, where the main variables are identified.  

 

 
Figure 1. Micrograph of the contraction geometry used in 
the experiments, where the shape of the quasi-hyperbolic 

walls are marked in red. 
 
The width of the inlet and outlet channels (W1) is the 

same and equal to 400 µm and the expansion region is well 
defined the following equation: 

 
* 5 *200 /[1 0.05 ( ) 2.5 10 ( ) ]y L x −= ± + − − × − 2L x  (1) 

 
valid for *0 ≤ ≤x L  with L *= 123 µm.  The contraction 
ratio defined as CR = W1/W2, where W2 is the projected 
channel width at the contraction plane, amounts to CR = 6.4 
for the present geometry. 

A syringe pump (Harvard Apparatus PHD2000) was 
used to control the flow rate at the inlet using syringes with 
different volumes according to the required flow rate. For 
the flow visualizations, we used an optical set-up composed 
of an inverted epi-fluorescence microscope (DMI 5000M, 
Leica Microsystems GmbH) fitted with an appropriate filter 
cube (Leica Microsystems GmbH, excitation BP 530–545 
nm, dichroic mirror 565 nm, barrier filter 610–675 nm). 
The flow patterns were captured by streak photography 
(with long exposures) using a CCD camera (Leica 
Microsystems GmbH, DFC350 FX), and a 100W mercury 
lamp as illumination source. For this purpose, the fluid was 
seeded with 1 µm fluorescent tracer particles (Nile Red, 
Molecular Probes, Invitrogen, Ex/Em: 520/580 nm). 

All images shown in this work were captured at the 
center plane of the geometry using a 20× (NA = 0.25) 
microscope objective (Leica Microsystems GmbH). For the 
set-up used, the depth of field corresponds to δz = 4.55 µm 
calculated according to: 
                                                                                                            

0
2 (NA)(NA)

n ne
z

M

λ
δ = +  (1) 

 
where n is the refractive index, λ0 is the wavelength of the 
light (in vacuum), NA is the numerical aperture of the 

objective, e is the minimum detectable size and M is the 
total magnification (in this case e/M = 0.65 µm).   

 
2.2 Fluid Rheology 

The viscoelastic fluid used in the experiments is a 
solution of polyethylene oxide (PEO, with a molecular 
weight Mw = 8×106 g mol-1 supplied by Sigma-Aldrich) in a 
water/glycerol mixture prepared using a magnetic stirrer at 
low speeds, in order to prevent unnecessary mechanical 
degradation of the polymer molecules. The composition (by 
weight) is 0.4% PEO, 66.3% water and 33.3% glycerol. 

The fluids were characterized rheologically using a 
rotational rheometer (Anton Paar, Physica MCR301) and 
capillary break-up extensional rheometer (Haake CaBER 1, 
Thermo Scientific). The latter is employed to quantify the 
response of the fluid to an extensional deformation. In 
particular, a liquid bridge confined between the two plates 
(of diameter Dp = 6 mm) is stretched as the top plate moves 
(−50 ms ≤ t ≤ 0) from an initial (hi = 3 mm) to a final height 
(hf = 12 mm) and the subsequent evolution of the filament 
diameter is monitored using a laser micrometer. In the 
regime when surface tension and elasticity govern the 
filament drainage the local extensional rate in the filament 
is constant and the diameter of the filament (D) decays 
exponentially with time (t) according to [13]: 

y 

 

p( ) exp[ (3 )] D t D t λ∝ −  (2) 
 
The filament thinning evolution of the PEO solution is 
shown in Fig. 2 and the fit of Equation (2) to the region of 
exponential decay is shown in red, yielding a relaxation 
time λ = 123 ms. 

 
Figure 2. Filament thinning obtained during a CaBER 

experiment (only part of the experimental data is plotted to 
improve visually the figure). 

 
The steady-shear viscosity measurements were carried 

out at 20ºC for a range of shear rates (1 ≤ γ˙ /s−1 ≤ 10 000) 
using a cone and plate geometry (50 mm in diameter and 1º 
angle) and are shown in Fig. 3a. In Fig. 3b, we illustrated 
the storage and loss moduli (G’ and G’’) in dynamic shear 
flow.  The fluid exhibits a shear thinning behavior, as a 
result of shear induced changes in the microstructure - as 

W1 
200 μm 

W2 x z
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the shear rate is increased, the polymer molecules orient 
and align with the flow direction.   

 
Figure 3. Rheological characteristics of the fluid: (a) 

Steady-shear flow curve; (b) Dynamic shear data measured 
under small amplitude oscillatory shear (SAOS) flow. 

 
3 NUMERICAL METHOD AND 

GOVERNING EQUATIONS 
 

The equations we need to solve are those of conservation of 
mass and momentum: 
 

0=∇⋅u      (3) 

2
sρ + ρ = p+

t
η∂

∇⋅ −∇ ∇⋅ + ∇
∂
u

uu τ u   (4) 

 
together with an appropriate constitutive equation for the 
extra stress tensor. Here we use the Oldroyd-B model: 
 

( ) ( 
T+ λ + = η + + λ +

t

∂⎛ ⎞∇⋅ ∇ ∇ ⋅∇ ∇ ⋅⎜ ⎟∂⎝ ⎠
ττ u τ u u τ u u τ)T  (5) 

 
A fully-implicit finite-volume method was used to solve 
Equations (3) – (6). The numerical technique has been 
described in detail elsewhere [14-16] and is not repeated 
here due to space restrictions.  

 
4 RESULTS AND DISCUSSION 

 
The effect of the Deborah number on the flow patterns 

captured experimentally was studied by varying the flow 
rate imposed using the syringe pump. For very low flow 

rates, the flow resembles that obtained under Newtonian 
creeping flow conditions (Fig. 4a), and an increase in the 
flow rate leads to the formation and growth of symmetric 
lip (Fig. 4b) and (later) corner vortices (Fig. 4c) upstream of 
the contraction as observed previously in sudden and 
smooth contractions with dilute polymer solutions [2]. This 
is followed by an asymmetric steady flow region, in which 
the two vortices exhibit slightly different sizes; eventually, 
as the flow rate is increased further, the flow becomes 
unsteady and the main vortices pulsate, growing and 
shrinking slightly in a periodic fashion (Fig. 4d). At 
sufficiently high Deborah numbers, this process becomes 
more dramatic and resembles what Afonso et al. [1] coined 
as back-shedding regime in which the size of the main 
vortices varies substantially and very rapidly (Fig. 4e), a 
process accompanied by the formation of upstream 
secondary vortices, which are shed in the upstream flow 
direction (Fig. 4e). This time dependent behavior including 
the formation and shedding of upstream secondary vortices 
was also captured by our numerical simulations with 2D 
meshes using the Oldroyd-B model (Fig. 5). Although the 
experimental and numerical results are not in quantitative 
agreement, the results are encouraging and we expect that 
using a more suitable constitutive equation (eg. PTT model) 
and 3D calculations will be able to provide more realistic 
predictions. 

 
Figure 5. Numerically obtained flow map on the De - Re 

parameter space. 
 

Acknowledgements 
The authors would like to acknowledge financial 

support of FCT through projects REEQ/262/EME/2005, 
REEQ/928/EME/2005, PTDC/EME-MFE/099109/2008 
and scholarship SFRH/BPD/75436/2010. 

 
REFERENCES 

 [1] A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. 
Alves, Numerical study of entry flows of 
viscoelastic fluids, J. Fluid Mech., 2011 (in press). 

[2] D.V. Boger, Ann. Rev. Fluid Mech., 19, 157, 1987. 
[3] S.A. White, A.D. Gotsis and D.G. Baird, J Non-

Newt. Fluid Mech., 24, 121, 1987. 

NSTI-Nanotech 2011, www.nsti.org, ISBN 978-1-4398-7139-3 Vol. 2, 2011 499



[10] M.S.N. Oliveira, L.E. Rodd, G.H. McKinley and 
M.A. Alves, Micro Nanofluidics, 5, 809, 2008. 

[4] J.P. Rothstein and G.H. McKinley, J. Non-Newt. 
Fluid Mech., 98, 33, 2001. 

[11] C.J. Pipe and G.H. McKinley, Mech. Res. Comm., 
36, 110, 2009.  

[5] M.A. Alves, F.T. Pinho and P.J. Oliveira, AIChE J., 
51, 2908, 2005. 

[12] R. Fattal and R. Kupferman, J. Non-Newt. Fluid 
Mech., 126, 23, 2005. 

[6] L.E. Rodd, T.P. Scott, D.V. Boger, J.J. Cooper-
White and G.H. McKinley, J. Non-Newt. Fluid 
Mech., 129, 1, 2005. [13] V.M. Entov and E.J. Hinch, J. Non-Newt. Fluid 

Mech., 72, 31, 1997. [7] L.E. Rodd, J.J. Cooper-White, D.V. Boger and G.H. 
McKinley, J. Non-Newt. Fluid Mech., 134, 170, 
2007. 

[14] P.J. Oliveira, F.T. Pinho and G.A. Pinto, J. Non-
Newt. Fluid Mech, 79, 1, 1998. 

[15] M.A. Alves, P.J. Oliveira and F.T. Pinho, Int. J. 
Num. Methods in Fluids, 41, 47, 2003. 

[8] M.S.N. Oliveira, P.J. Oliveira, F.T. Pinho and M.A. 
Alves, J. Non-Newt. Fluid Mech., 147, 92, 2007. 

[16] A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. 
Alves, J. Non-Newt. Fluid Mech., 157, 55, 2009. 

[9] P.C. Sousa, P.M. Coelho, M.S.N. Oliveira and M.A. 
Alves, J. Non-New. Fluid Mech., 160, 122, 2009.  

  
 

   

    

                 

            
Figure 4. Effect of the flow rate on the flow patterns obtained experimentally. For Q = 1.0 ml/h the images were captured 

further upstream of the contraction and as such the contraction region is not visible. The white lines were drawn to indicate the 
boundary walls of the microchannel. 

(a)  Q = 0.02 ml/h (b)  Q = 0.08 ml/h (c)  Q = 0.3 ml/h 

(d1)  Q = 0.7 ml/h (d2)  Q = 0.7 ml/h 

(e1)  Q = 1.0 ml/h 

(e2)  Q = 1.0 ml/h 
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