Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy

Harms, Jonathan E. and Benveniste, Morris and Maclean, John K.F. and Partin, Kathryn M. and Jamieson, Craig (2013) Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy. Neuropharmacology, 64. pp. 45-52. ISSN 0028-3908

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Pos. allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors facilitate synaptic plasticity and can improve various forms of learning and memory. These modulators show promise as therapeutic agents for the treatment of neurol. disorders such as schizophrenia, ADHD, and mental depression. Three classes of pos. modulator, the benzamides, the thiadiazides, and the biarylsulfonamides differentially occupy a solvent accessible binding pocket at the interface between the two subunits that form the AMPA receptor ligand-binding pocket. Here, we describe the electrophysiol. properties of a new chemotype derived from a structure-based drug design strategy (SBDD), which makes similar receptor interactions compared to previously reported classes of modulator. This pyrazole amide deriv., JAMI1001A, with a promising developability profile, efficaciously modulates AMPA receptor deactivation and desensitization of both flip and flop receptor isoforms.This article is part of a Special Issue entitled ‘Cognitive Enhancers'. [on SciFinder(R)]