Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Strong fragmentation and coagulation with power-law rates

Banasiak, Jacek and Lamb, Wilson and Langer, Matthias (2013) Strong fragmentation and coagulation with power-law rates. Journal of Engineering Mathematics, 82 (1). pp. 199-215. ISSN 0022-0833

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Existence of global classical solutions to fragmentation and coagulation equations with unbounded coagulation rates has been recently proved for initial conditions with finite higher order moments. These results cannot be directly generalized to the most natural space of solutions with finite mass and number of particles due to the lack of precise characterization of the domain of the generator of the fragmentation semigroup. In this paper we show that such a generalization is possible in the case when both fragmentation and coagulation are described by power-law rates which are commonly used in the engineering practice. This is achieved through direct estimates of the resolvent of the fragmentation operator, which in this case is explicitly known, proving that it is sectorial and carefully intertwining the corresponding intermediate spaces with appropriate weighted L1 spaces.