Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A theoretical review of the operation of vibratory stress relief with particular reference to the stabilization of large-scale fabrications

Walker, C. (2011) A theoretical review of the operation of vibratory stress relief with particular reference to the stabilization of large-scale fabrications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 225 (3). pp. 195-204. ISSN 1464-4207

[img]
Preview
PDF
195.full.pdf - Final Published Version

Download (4MB) | Preview

Abstract

Vibratory stress relief (VSR) is widely used on large welded fabrications to stabilize the structures so that they do not distort during further machining or during operational duty. The level of applied stress achieved during VSR on such structures is only 5–10 per cent of the yield stress. It is, therefore, not obvious how these applied loads come to modify the level of residual stress. It is suggested here that the reason for the success of VSR applied to large fabrications lies (a) in the origin of the residual stresses and (b) in the partial relief of these residual stresses by the initiation of the transformation of retained austenite particles (in the size range from 1 to 25 µm) by the movement of dislocations into positions that are favourable for the nucleation of martensite embryos. The shear deformation associated with the transformation of retained austenite into martensite will reduce the residual stress field to the point where the stability of the structure may be assured.