Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

Lima, Rui and Oliveira, Monica and Ishikawa, T. and Kaji, H. and Tanaka, S. and Nishizawa, M. and Yamaguchi, T. (2009) Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication, 1 (3). ISSN 1758-5082

[img] PDF
Oliveira_M_Pure_Axisymmetric_polydimethysiloxane_microchannels_for_in_vitro_hemodynamic_studies_Sep_2009.pdf - Preprint

Download (997kB)


The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal µPIV/PTV. By using a confocal µPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 µm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit.