Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

Lima, Rui and Oliveira, Monica and Ishikawa, T. and Kaji, H. and Tanaka, S. and Nishizawa, M. and Yamaguchi, T. (2009) Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication, 1 (3). ISSN 1758-5082

[img] PDF
Oliveira_M_Pure_Axisymmetric_polydimethysiloxane_microchannels_for_in_vitro_hemodynamic_studies_Sep_2009.pdf - Preprint

Download (997kB)

Abstract

The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal µPIV/PTV. By using a confocal µPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 µm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit.