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In this work we investigate the three-dimensional laminar flow of Newtonian and viscoelastic fluids
through square–square expansions. The experimental results obtained in this simple geometry provide
useful data for benchmarking purposes in complex three-dimensional flows. Visualizations of the flow
patterns were performed using streak photography, the velocity field of the flow was measured in detail
using particle image velocimetry and additionally, pressure drop measurements were carried out. The
Newtonian fluid flow was investigated for the expansion ratios of 1:2.4, 1:4 and 1:8 and the experimental
results were compared with numerical predictions. For all expansion ratios studied, a corner vortex is
observed downstream of the expansion and an increase of the flow inertia leads to an enhancement of
the vortex size. Good agreement is found between experimental and numerical results. The flow of the
two non-Newtonian fluids was investigated experimentally for expansion ratios of 1:2.4, 1:4, 1:8 and
1:12, and compared with numerical simulations using the Oldroyd-B, FENE-MCR and sPTT constitutive
equations. For both the Boger and shear-thinning viscoelastic fluids, a corner vortex appears downstream
of the expansion, which decreases in size and strength when the elasticity of the flow is increased. For all
fluids and expansion ratios studied, the recirculations that are formed downstream of the square–square
expansion exhibit a three-dimensional structure evidenced by a helical flow, which is also predicted in
the numerical simulations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The flow of Newtonian and non-Newtonian fluids in channels
with variable cross-section, which include contractions and expan-
sions, is a classical fluid mechanics problem, which has been ad-
dressed in a number of experimental and numerical studies
published in the literature (e.g. [1–7]). The investigation of these
flows is essential not only from a fundamental point of view but
also due to their importance in practical applications, namely in
the polymer processing industry. The flow through sudden con-
tractions is a benchmark problem that has received broader atten-
tion than the flow through abrupt expansions, possibly due to the
wide and interesting nature of the flow patterns that occur in con-
traction flows, particularly with viscoelastic fluids (e.g. vortex
enhancement, divergent and unsteady flow) [8], and its applicabil-
ity to estimate the extensional viscosity in entry-flows (e.g. [9,10]).
Nevertheless, expansion flows can also be used to understand en-
try-flow problems and to validate numerical codes.

Early experimental studies on expansion flows focused on
Newtonian fluids in two-dimensional (2D) geometries [11–13]. It
was found that Moffatt vortices [14] appear downstream of the
ll rights reserved.
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expansion and that flow inertia promotes the enhancement of
these recirculations. Later on, Acrivos and Schrader [15] and Milos
et al. [16] investigated numerically the flow of Newtonian fluids at
high values of the Reynolds number (Re) and they found that above
a critical value of Re the flow becomes unsteady. Furthermore,
according to the experiments of Townsend and Walters [17] and
the numerical predictions of Baloch et al. [18], a pair of lip vortices
develops close to the re-entrant corner for high expansion ratios.
These vortices then expand to the downstream wall increasing in
size with the Reynolds number.

Townsend and Walters [17] have also studied the flow behavior
of viscoelastic fluids through expansions, including the flow of a
0.15% aqueous solution of polyacrylamide (PAA) through 3:40
and 1:80 planar expansions, and the flow of a 0.1% aqueous solu-
tion of xanthan gum and glass fibers through three-dimensional
(3D) axisymmetric expansions (expansion ratio of 3:40). For visco-
elastic fluids, the recirculations also appear downstream of the
expansion, but unlike the Newtonian case, the recirculations de-
crease in size when the elasticity of the flow is increased. Baloch
et al. [19] used the linear form of the Phan-Thien and Tanner
(PTT) model [20,21] to numerically simulate a number of viscoelas-
tic flows in planar (expansion ratio of 3:40 and 1:80) and 3D
(expansion ratio of 3:3:40) geometries. In agreement with the
experimental work of Townsend and Walters [17], the numerical
results of Baloch et al. [19] reported a decrease in the vortex
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activity due to viscoelasticity, which pushes the recirculations
against the downstream corners as previously described by
Halmos and Boger [22]. In particular, the viscoelastic fluid flow
through planar expansions shows a reduction of the vortex size
and strength as the Deborah number (De) is increased. Eventually,
at high Deborah number flows, the recirculations downstream of
the expansion seem to disappear altogether. This suppression
mechanism has been compared to the extrudate-swell phenome-
non, in which the polymer molecules passing through an expan-
sion and entering a larger cross-section reservoir relax the elastic
stresses by expanding the main flow stream tube [23]. Another
interesting feature worth mentioning is the onset of a lip vortex
in the inlet channel upstream of the expansion observed for
Upper-Convected Maxwell (UCM) and Oldroyd-B fluids flowing
through a 1:3 planar expansion under creeping flow conditions
[23]. More recently, the same authors investigated the effect of
the expansion ratio on the flow patterns of a UCM fluid [24]. For
the lower expansion ratios, a non-monotonic variation of vortex
length with De was predicted, with vortex reduction at low De, fol-
lowed by vortex enhancement at higher De. For high expansion ra-
tios (ER > 3), the vortex size was found to decrease monotonically
as De increases.

There are several works that report the development of asym-
metric flow in planar expansions for Newtonian and non-Newto-
nian fluids (e.g. [25–31]). Cherdron et al. [25] used flow
visualization and laser-Doppler anemometry techniques to quan-
tify the steady asymmetry that develops for the Newtonian flow
in symmetric planar sudden-expansion geometries, and concluded
that the intensity of fluctuating energy measured in such low
Reynolds number flows can even be larger than that observed in
corresponding turbulent flows. Fearn et al. [26] investigated exper-
imental and numerically the Newtonian fluid flow through a
symmetric sudden planar expansion (ER = 3) and found that the
flow becomes asymmetric and time-dependent for high Reynolds
numbers, and related this effect with the 3D structure that devel-
ops under those conditions. For generalized Newtonian fluids there
are also a number of works that investigate the effect of shear-
thinning and shear-thickening effects on the critical conditions
for development of flow asymmetries in planar sudden expansion
flows. Manica and Bortoli [27] used a power-law model to study
numerically the laminar flow in a 1:3 planar expansion, and con-
cluded that for shear-thinning fluids the critical Reynolds number
for onset of steady flow asymmetry increases as the power law in-
dex (n) is reduced, while the opposite happens to shear-thickening
fluids as n increases. More recently, Neofytou [28] used Casson and
power-law rheological models to investigate the laminar flow in a
1:2 planar expansion. For both non-Newtonian fluids the numeri-
cal results showed a linear relation between the inverse dimen-
sionless inlet wall shear stress, at the critical flow conditions for
onset of asymmetry flow, and the corresponding dimensionless
wall shear rate for the range of Power–Law index and Bingham
numbers investigated.

There are also a few studies investigating the stabilizing effect
of viscoelasticity on the critical conditions for onset of flow asym-
metries in planar expansion flows. Oliveira [29] studied numeri-
cally the flow of constant shear viscosity viscoelastic fluids
(Boger fluids) through 1:3 planar expansions. The working fluids
were a viscoelastic fluid that was described using the modified
FENE-CR constitutive equation and a Newtonian fluid that was
used with the purpose of validating the method and for compari-
son purposes. The numerical results showed that the flow becomes
asymmetric for both fluids, however, for the viscoelastic case, the
elasticity tends to stabilize the flow and the critical Reynolds num-
ber is higher than that found for a Newtonian fluid. More recently,
Rocha et al. [30] also investigated the onset of asymmetries in vis-
coelastic fluid flow through a 1:4 planar sudden expansion. The
authors determined the critical Re at which the bifurcation phe-
nomenon occurs, and concluded that it is lower than that obtained
for lower expansion ratios [29]. Asymmetries in the mean axial
velocity profile of a shear-thinning fluid flowing through an axi-
symmetric abrupt expansion were also found in the work of Dales
et al. [32] in which the fluid was an aqueous solution of PAA and
the flow regime was turbulent. However, in this case, the Newto-
nian fluid (water) flow did not show any asymmetries. More re-
cently, another experimental study [33] showed that for a 1:2
axisymmetric expansion the Newtonian fluid flow also becomes
asymmetric (and steady), under laminar flow conditions, above
Re = 1139. For Re > 1400 the flow eventually becomes time-
dependent.

In most of the planar expansion flows discussed above, three-
dimensional effects are negligible and less demanding 2D numeri-
cal simulations can be used to predict the flow correctly. Configu-
rations where three-dimensional effects are important are more
challenging to analyze experimental and numerically and as such,
the number of published works concerning this topic is reduced.
Two important exceptions are the works of Burgos and Alexandrou
[34] and Alexandrou et al. [35] in which the flow of a generalized
non-Newtonian fluid (Herschel-Bulkley) through three-dimen-
sional 1:2 and 1:4 expansions was investigated. In the first work
[34], the unsteady flow in a 1:2 sudden expansion was studied
and in the latter [35], the steady flow of Herschel-Bulkley fluids
was investigated. The authors showed that the development of
yielded and unyielded regions in this type of 3D geometries de-
pends on the expansion ratio and on Bingham and Reynolds
numbers.

In this work, we focus on the flow through a three-dimensional
square–square expansion, with different expansion ratios (ER = 2.4,
4, 8 and 12, defined as the ratio between the side lengths of the
downstream and upstream square ducts). We use Newtonian and
viscoelastic fluids with different rheological characteristics: a
Boger fluid, for which the shear viscosity is nearly independent
of the shear rate and a shear-thinning viscoelastic fluid. Visualiza-
tions were undertaken in order to assess the flow patterns and
detailed particle image velocimetry (PIV) measurements were per-
formed to quantify the velocity field. For the Boger fluid, pressure
drop measurements are also presented and discussed. Moreover,
3D numerical simulations were carried out in order to predict
the Newtonian and non-Newtonian fluid flow through square–
square expansions.
2. Experimental techniques

2.1. Experimental set-up

A scheme of the experimental set-up is shown in Fig. 1. The
main test section in the experimental rig has a square cross-section
of length L = 1.75 m, which is composed of a downstream square
channel, with a side length of 2H2 = 24.0 mm, and an upstream
interchangeable square channel which fits inside the larger one
and has a smaller side length. The internal side length of the inner
square part can be set to 2H1 = 10.0, 6.0, 3.0 or 2.0 mm in order to
obtain the desired expansion ratios, ER = H2/H1 = 2.4, 4, 8 or 12.

The upstream and downstream sections are denoted by sub-
scripts 1 and 2, respectively. For optical access, the channels are
made of transparent perspex.

The flow rate is set by adjusting the difference between the li-
quid levels in the two reservoirs, applying vacuum to the left-hand
side reservoir using a vacuum pump (KNF Loboport N811-KT.18)
and selecting the diameter of the pipe that connects the channel
to the outflow reservoir. We do not use valves to regulate the flow
rate to avoid degradation of the viscoelastic fluids in the narrow
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Fig. 1. Schematic diagram of the experimental set-up.
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passage of the valve. The right-hand side reservoir was used to
supply the fluid that flowed through the column, and it was placed
on a weighing scale (KERN DS 16k0.2; with readout of 0.2 g and
maximum range of 16 kg) in order to measure the mass flow rate
(Q m � DWeight=Dtime). More details of the experimental set-up
can be found in Ref. [8].
Table 1
Pressure port locations in the x-direction (streamwise) for each expansion ratio. The
expansion plane is located at x = 0.

x1/mm x2/mm

ER = 4 �99 152
ER = 8 �48 153
ER = 12 �29 154
2.2. Measurement techniques

Two different optical techniques were used in this study, in or-
der to characterize the flow field: streak photography and particle
image velocimetry. For this purpose, the fluids used in the experi-
ments were seeded with 10 lm PVC tracer particles.

Streak photography uses long time exposures to obtain a visual
fingerprint of the flow patterns. For flow illumination, we used a
635 nm 5 mW laser diode (Vector, model 5200-20) or a 532 nm
3 mW laser diode (Imatronic, model LLM115). In both cases a
cylindrical lens is attached to the diode to generate a sheet of light.
The streak images were captured using a digital camera (Canon
EOS 30 D) with a macro lens (Canon EF100 mm, f/2.8), placed per-
pendicularly to the light sheet.

For the measurement of the velocity field, a doubled pulsed
Nd:YAG laser, with a maximum energy of 50 mJ (Solo PIV III from
New Wave Research) was used. The laser was combined with
appropriate optical components, producing a planar light sheet
that illuminates the plane under study. The images were recorded
using a digital CCD camera (Flow Sense 2 M from Dantec Dynamics
equipped with a Nikon AF Micro Nikkor 60 mm f/2.8D lens) which
was placed perpendicularly to the light sheet. The images were
processed using FlowManager v4.60 software (Dantec Dynamics)
and the velocity vector map for each pair of images was deter-
mined using a cross-correlation technique. A detailed discussion
of the technique employed can be found in Ref. [36].

The flow visualizations and the velocity field measurements
using PIV were both undertaken at different parallel planes of
the flow in the square channel. Therefore, it was necessary to
translate simultaneously the light source and the camera utilized
for each optical technique using for this purpose a x–y traverse
and a dial comparator (readout of ±0.01 mm).
Pressure drop measurements across the expansion were carried
out using differential pressure sensors (Honeywell, model 26PC
series), previously calibrated using a hydrostatic column of water,
which are able to cover pressure differences up to 6.9 kPa. The
experiments were performed by determining the pressure drop
(Dp) across the expansion, with one pressure port located up-
stream (p1) and another port (p2) located downstream of the
expansion plane. The precise locations of the pressure ports are
listed in Table 1 for different ER.

For each flow rate studied, the output signal of the pressure
transducer was recorded using LabView v7.1 software, until the
steady-state was reached.
2.3. Rheological characterization

A Newtonian and two different non-Newtonian fluids were
used in the experiments. Table 2 summarizes the composition
and density (q) of the fluids, measured at 293.2 K using two hyd-
rometers (readability of 1 kg/m3; ranges 1100–1200 kg/m3 and
1200–1300 kg/m3). A biocide (Kathon LXE, Rohm and Haas) was
added to the solutions, at a weight concentration of 25 ppm, in or-
der to minimize bacterial growth and biological degradation of the
fluids.

Furthermore, the working fluids were characterized rheologi-
cally at different temperatures in the range of 283.2 6 T/
K 6 303.2 using a shear rheometer (MCR301, Anton Paar) and the
time-temperature superposition method was used to obtain a mas-
ter flow curve.

The variation of the viscosity with temperature can be de-
scribed using an Arrhenius equation [37],



Table 2
Composition by weight and density of the fluids measured at 293.2 K.

Fluid PAA [ppm] Glycerin [%] Water [%] Kathon [ppm] NaCl [%] q [kg m�3]

Newtonian – 84.99 15.01 25 – 1221
Boger 100 90.96 7.52 25 1.51 1249
Shear-Thinning 600 59.94 40.00 25 – 1156
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Fig. 2. Master curves of the steady shear viscosity measured at different temper-
atures for the Boger (B) and shear-thinning (A) fluids (symbols). The solid line
represents the fit of the sPTT model to the experimental data of the shear-thinning
fluid. The minimum measurable shear viscosity, determined from 20� the
minimum measurable torque of the rheometer, is represented by dashed lines for
the shear-thinning fluid (iA) and the Boger fluid (iB).
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lnðaTÞ ¼
DH
R

1
T
� 1

T0

� �
ð1Þ

where aT is the shift factor, DH is an activation energy, R is the uni-
versal gas constant, T is the absolute temperature of the measure-
ment and T0 is the absolute reference temperature, which is set
here as T0 = 293.2 K, the temperature at which the experiments in
the square–square expansion were performed. The shift factor is de-
fined as [37],

aT ¼
gðTÞ
gðT0Þ

T0

T
q0

q
ð2Þ

where g(T) and q are the shear viscosity and the fluid density at
temperature T and g(T0) and q0 are the shear viscosity and the fluid
density at the reference temperature T0. Since the range of temper-
atures of the measurements is small, the shift factor can be simpli-
fied to:

aT ¼
gðTÞ
gðT0Þ

ð3Þ

For the Newtonian fluid, the shear viscosity at the reference
temperature is g(T0) = 0.0982 Pa s and DH/R = 5580 K. For the
non-Newtonian fluids we present in Fig. 2 the master curves mea-
sured for steady shear flow. For the Boger fluid, we obtained DH/
R = 6780 K for the range of temperatures between 283.2 and
303.2 K.
3. Numerical method and computational meshes

The flow through square–square expansions with different
expansion ratios (ER = 2.4, 4, 8 and 12) was simulated numerically
using a fully-implicit finite-volume method with a time marching
pressure-correction algorithm [38]. The governing equations that
describe an isothermal, laminar and incompressible fluid flow are
those of conservation of mass and momentum,

r � u ¼ 0 ð4Þ

q
@u
@t
þr � uu

� �
¼ �rpþ gsr2uþr � s ð5Þ

where u is the velocity vector, t the time, p the pressure and gS the
Newtonian solvent viscosity. The extra-stress tensor (st) is de-
scribed by the sum of a Newtonian ðss ¼ gsðruþruTÞÞ and a poly-
meric solute contribution (s). In the numerical simulations of the
Newtonian fluid flow, the polymeric contribution to the extra-stress
tensor is null (r � s ¼ 0) and only the Newtonian component re-
mains in Eq. (5). On the other hand, for the numerical simulations
of the viscoelastic fluid flow, the polymeric contribution is included
and is described using an appropriate rheological constitutive equa-
tion. The following general equation was used,

f ðTr sÞsþ k
gðTr sÞ

@s
@t
þr � us

� �

¼ gP ruþruT
� �

þ k
gðTr sÞ s � ruþruT � s

� �
ð6Þ

where k is the relaxation time, gP is the zero-shear viscosity of the
polymer and f ðTr sÞ and gðTr sÞ are functions of the trace of tensor
s, Tr(s).

For the shear-thinning fluid the simplified PTT model was used
(hereafter designated as sPTT model), which is obtained setting
gðTr sÞ ¼ 1 and considering the linear form for the stress function
f (Tr s),

f ðTr sÞ ¼ 1þ ke
gP

TrðsÞ ð7Þ

where e is the extensibility parameter. For the Boger fluid two mod-
els were used in the numerical simulations, namely the Oldroyd-B
model and the FENE-MCR constitutive equation [39,40]. The Old-
royd-B model has the known drawback of predicting an unbounded
steady-state extensional viscosity above a critical dimensionless
strain rate (k _ecrit ¼ 0:5) and is obtained considering e ¼ 0 (i.e.
f ðTr sÞ ¼ 1) and gðTr sÞ ¼ 1 in Eq. (6). The FENE-MCR model is ob-
tained setting e ¼ 0 in Eq. (6), and considering the following stretch
function,

gðTr sÞ ¼ L2 þ ðk=gPÞTrðsÞ
L2 � 3

ð8Þ

where the dimensionless parameter L2 represents the ratio between
the maximum and the equilibrium average dumbbell extensions.
For large values of L2 the Oldroyd-B model is asymptotically ap-
proached, while using finite values of L2 removes the unbounded
behavior of the steady-state extensional viscosity at large strain
rates.

For the shear-thinning fluid flow, the numerical simulations
were performed using the sPTT model with one mode and a solvent
contribution [20,21]. The model parameters were set by fitting the
steady shear flow curve obtained experimentally (cf. Fig. 2), using
the following parameters [41]: zero-shear polymer viscosity,
gP = 1.62 Pa s; solvent viscosity, gS = 0.03 Pa s; relaxation time,



Fig. 3. Zoomed view of mesh M64 used in the numerical simulations of the flow
through the 1:8 square–square abrupt expansion. (a) 3D view; (b) xy centerplane
(z = 0).
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k = 32 s; extensibility parameter, e = 0.06. This fit is also shown in
Fig. 2 for comparison with the experimental data.

For the Boger fluid flow, simulations were carried out using
both the Oldroyd-B and the FENE-MCR models with the following
parameters: e = 0, k = 3.29 s, gP = 0.279 Pa s and gS = 0.367 Pa s.
These parameters were selected based on the fit of a three-mode
model with a solvent contribution to the rheological measure-
ments obtained under small amplitude oscillatory shear flow, as
detailed in our previous work [8]. For the simulations using the
FENE-MCR model a value of L2 ¼ 100 was used (in agreement with
other works in the literature, e.g. [40]), although in some cases the
influence of L2 was also analyzed.

Eqs. (4)–(6) are integrated in space over the computational cells
of the mesh and in time over a small time step (dt). The time deriv-
ative is discretized with an implicit first-order Euler scheme, the
diffusive terms are discretized with second-order central differ-
ences and the discretization of the advective terms, both in the
momentum and constitutive equations, is done using the CUBISTA
high-resolution scheme [42].

The computational meshes used in this study for the numerical
simulation of the flow through square–square expansions are
composed of three-dimensional orthogonal blocks and non-uni-
form cells that follow a geometrical progression within each
direction. For the expansion ratios of 2.4, 4 and 8, the numerical
simulations were carried out using three different meshes: mesh
M40 which has 40 cells in y- and z-directions of the downstream
channel, mesh M64 with 64 cells in y- and z-directions and a
more refined mesh, M80 which has 80 cells in both orthogonal
directions. For the expansion ratio of 12, simulations were per-
formed using three meshes with a slightly different number of
cells: mesh M48, M60 and M96, which have 48, 60 and 96 cells
in the y- and z-directions of the downstream channel, respec-
tively. The total number of cells (NC) and the dimensionless min-
imum cell size (Dxmin/2H2, Dymin/2H2 and Dzmin/2H2) of the
meshes used for all the ER are presented in Table 3. In Fig. 3 we
show mesh M64 used in the numerical simulations of the flow
through the 1:8 square–square expansion.

In spite of the geometrical symmetry relative to the central
planes (y = 0 and z = 0) and diagonal planes (z = ±y), all simulations
were performed on meshes covering the whole wall-to-wall geom-
etries. Regarding the boundary conditions, no-slip condition at the
solid walls was imposed and the inlets and outlets were positioned
far from the expansion plane so that fully developed flow condi-
tions were enforced. At the outlets, vanishing stream wise gradi-
ents of velocity and extra-stress tensor components are imposed,
and pressure is linearly extrapolated from the two upstream cell
center values.
Table 3
Characteristics of the computational meshes used (NC: number of computational
cells).

ER Mesh NC Dxmin/2H2 Dymin/2H2 = Dzmin/2H2

M40 164000 2.08 � 10�2 2.04 � 10�2

2.4 M64 419840 1.39 � 10�2 1.25 � 10�2

M80 656000 1.03 � 10�2 9.93 � 10�3

M40 51000 1.31 � 10�2 1.45 � 10�2

4 M64 130560 8.20 � 10�3 8.16 � 10�3

M80 408000 6.26 � 10�3 6.25 � 10�3

M40 163200 7.50 � 10�3 8.69 � 10�3

8 M64 417792 4.69 � 10�3 4.55 � 10�3

M80 652800 3.75 � 10�3 3.75 � 10�3

M48 113664 1.08 � 10�2 9.52 � 10�3

12 M60 177600 8.61 � 10�3 8.33 � 10�3

M96 909312 1.34 � 10�3 1.35 � 10�3
4. Flow patterns and vortex length

The flow of the Newtonian and viscoelastic fluids through
square–square expansions, with different expansion ratios, was
investigated in terms of the vortex length and flow patterns for a
wide range of flow rates. For this purpose, different parallel planes
of the channel were investigated using flow visualization.
4.1. Inertial effects

In order to study the influence of Re on the vortex dynamics of
Newtonian fluid flow, visualizations of the flow patterns near the
expansion plane were performed for a wide range of flow rates
(Re < 20) and various expansion ratios (ER = 2.4, 4 and 8). Here,
the Reynolds number is based on upstream flow characteristics
and defined as Re = qU1(2H1)/g, where U1 is the average velocity
in the upstream channel. For the shear-thinning fluid, the viscosity
is calculated using the sPTT model at a characteristic shear-rate
( _c ¼ U1=H1).

In Fig. 4 we compare the experimental and numerical flow pat-
terns obtained at the center plane for all expansion ratios studied.
The numerical predictions were carried out with the refined mesh
(M80) in order to ensure high accuracy.

As can be observed in Fig. 4, a Moffatt vortex [14] is formed
downstream of the expansion plane, for all expansion ratios.
Increasing the flow inertia leads to an increase of the vortex size



Fig. 4. Experimental and numerical flow patterns at the middle plane (y = 0 or z = 0) for the Newtonian fluid at different Reynolds numbers and expansion ratios.
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and an excellent agreement between the experimental results and
numerical predictions is found. For Newtonian fluids, the forma-
tion and dynamics of the recirculations that appear downstream
of an abrupt expansion is well-documented in the literature (e.g.
[17,18,24,25]).

In Fig. 5 we analyze the effect of flow inertia on the measured
normalized vortex length, xR/(2H2) (c.f. Fig. 4, Re = 15.4 and
ER = 2.4) for the Newtonian fluid. Moreover, we also present the
numerical predictions obtained with the three meshes (M40,
M64 and M80) used for each expansion ratio.

For all expansion ratios studied, the vortex size increases mono-
tonically when the Reynolds number is increased. For the whole
range of Re studied, the numerical results obtained using meshes
M40, M64 and M80 are in good agreement with the experimental
results. Furthermore, the differences between the three meshes are
small and the highest deviation between the results obtained is be-
low 2%, demonstrating the high accuracy of the numerical
simulations.
For creeping flow conditions (i.e. in the limit when Re ? 0) the
numerical simulations predict the following vortex dimensions: xR/
(2H2) = 0.141 for ER = 2.4; xR/(2H2) = 0.163 for ER = 4; xR/
(2H2) = 0.174 for ER = 8. These results are in agreement with the
predictions for square–square contraction flows under creeping
flow conditions (cf. [8,43,44]), a consequence of the reversibility
of Newtonian inertialess flows, i.e. in the limit when Re ? 0 the
flow patterns for expansion and contractions flows are
indistinguishable.

4.2. Elastic effects

In order to quantify the effect of viscoelasticity, we use the
Deborah number, here defined based on upstream flow conditions,
De = kU1/H1. Fig. 6 shows the flow patterns for both viscoelastic flu-
ids obtained experimentally at the middle plane (y = 0 or z = 0), for
a range of Deborah numbers (or flow rates), covering the whole
range of ER studied.
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Comparing the flow patterns for both viscoelastic fluids, several
similarities can be identified. For all expansion ratios studied, the
flow of the two viscoelastic fluids presents a corner vortex down-
stream of the expansion plane and, in general, increasing the
Deborah number leads to a decrease of the corner vortex length.

The dependence of the vortex length on the Deborah number,
for all expansion ratios studied, is quantified in Fig. 7 for the Boger
fluid and in Fig. 8 for the shear-thinning fluid. The vortex length is
Fig. 6. Effect of elasticity on the Boger and shear-thinning fluid flo
scaled with the side length of the downstream square duct (2H2).
In addition, in Figs. 7 and 8 we also show the predictions obtained
from the numerical simulations.

For the lower expansion ratios, ER = 2.4 and 4, the numerical
predictions of the viscoelastic fluid flow were obtained using
meshes M64 and M80 and there is a good agreement between
the numerical results using both computational meshes, as shown
in Figs. 7a and 8. For this reason, and since the computational time
required for the runs with more refined meshes is substantially
higher, for the simulations of the viscoelastic fluid flow through
the 1:8 and 1:12 square–square expansions we used only meshes
M64 or M60, respectively. Note that besides the high relaxation
times used, particularly for the shear-thinning fluid, the increase
of the number of cells for the refined meshes (e.g. for ER = 12,
the more refined mesh, M96, has five times more cells than mesh
M60) renders the simulations of the viscoelastic fluid flow through
3D expansions with a high expansion ratio unfeasible in practice
due to the very large CPU times involved (of the order of weeks
for the highest De).

At low Deborah numbers the numerical simulations predict
accurately the creeping flow Newtonian plateaus for all fluids
and expansion ratios (xR/(2H2) = 0.141 for ER = 2.4; xR/(2H2) =
0.163 for ER = 4; xR/(2H2) = 0.174 for ER = 8; xR/(2H2) = 0.177 for
ER = 12), which are not evident from the experimental results (cf.
Figs. 7a and 8). The comparison between the experimental results
obtained with the Boger fluid and the numerical simulations using
the Oldroyd-B model is displayed in Fig. 7a. The experimental data
show a slight decrease of the vortex size with increasing De, in con-
trast with the numerical simulations that display vortex suppres-
sion only up to De � 1.5 and De � 6 for ER = 2.4 and 12,
w patterns at the middle plane for different expansion ratios.
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respectively. At higher De significant vortex enhancement is
predicted with the Oldroyd-B model, a phenomenon that is not
reproduced in the experiments. Also, the convergence of the
numerical simulations using the Oldroyd-B model is limited to a
range of De significantly narrower than that achieved in the exper-
iments. To enhance the numerical stability, we also performed
numerical simulations using the FENE-MCR constitutive equation.

As detailed in Section 3, the values of parameters k, gP and gS of
the FENE-MCR model were the same as in the Oldroyd-B model.
However, we were unable to select the appropriate value of L2

based on steady or oscillatory shear data alone, and as such a base
value of L2 ¼ 100 was chosen in agreement with previous studies
(e.g. [40]). To analyze the effect of L2 on the numerical results,
we show in Fig. 7b the vortex size predicted for ER = 4 and a wide
range of L2 values (from a relatively low value of L2 ¼ 10 up to
L2 ¼ 1000). For high L2 (e.g. L2 ¼ 1000), the numerical results are
similar to those obtained with the Oldroyd-B model, with very lit-
tle improvement in terms of numerical stability and therefore in
terms of the range of De we are able to achieve in the simulations.
On the other hand, for low L2 (e.g. L2 ¼ 10) the polymer molecules
do not stretch significantly, and therefore elastic effects are sup-
pressed, with a low influence of De on the vortex size. For interme-
diate L2 values, we are able to observe a more pronounced
influence of De on the flow characteristics. For L2 ¼ 100 an inter-
esting behavior is observed in the predicted vortex size, with a
minimum vortex size occurring at De � 2.5, followed by a maxi-
mum value at De � 20. This non-monotonic behavior is exclusively
due to the elasticity of the fluid, since inertial effects are negligible,
even at the larger De flow conditions. Indeed, for the higher flow
rate cases we performed additional flow simulations assuming
the limiting behavior of creeping flow (by dropping the convective
term in the momentum equation) and the differences observed rel-
ative to the inertial case are negligible (in all cases below 1%), con-
firming that inertia is not important here. We also note that the
normal stresses are maximum along the upstream channel walls,
and in the vicinity of the expansion plane corner (singularity),
and the numerical simulations show an increase of Tr(s) when L2

increases.
In Fig. 7c we compare the experimental measurements of vor-

tex length for the various ER investigated with the predictions
using the FENE-MCR model, assuming L2 ¼ 100, a value used here-
after in all the numerical simulations with the FENE-MCR model.
The agreement between experiments and numerical simulations
is now better than that found for the Oldroyd-B model, but still
there are significant differences, indicating that more realistic con-
stitutive equations are needed to better reproduce the behavior of
the Boger fluid, probably using multimode models.

For the shear-thinning fluid, the decrease of the vortex size with
De is more pronounced, in particular for the lower expansion ra-
tios, as is visible in the experimental data shown in Fig. 8. The pre-
dictions using the sPTT model are restricted to a significantly
narrower range of De, as compared with the experiments, and
the vortex reduction trend is only predicted at low De flow condi-
tions. Interestingly, the same shear-thinning fluid was used in
Ref. [41] to investigate the viscoelastic flow in square–square con-
tractions [41], but in that case a much better agreement between
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the experiments and the numerical simulations (also using the
sPTT model with the same parameters used in the present investi-
gation, and the same viscoelastic flow solver) was observed with
converged numerical simulations in a wider range of De, showing
that the expansion flow is a numerically more stringent flow
problem.

4.3. Three-dimensionality of the flow

The previous investigations regarding the flow of Newtonian
and viscoelastic fluids, through square–square contractions
[8,43,44], demonstrated that the flow in these geometries is highly
three-dimensional. In order to study the 3D nature of the flow
through square–square expansions, a detailed investigation at sev-
eral parallel planes was carried out. Fig. 9 shows the visualized
pathlines and the corresponding numerical predictions for the
Newtonian fluid flow at different planes of the 1:8 square–square
expansion, ranging from the center plane (y/H2 = 0 or z/H2 = 0) to
a plane near the wall of the channel (y/H2 = ±0.875 or z/
H2 = ±0.875). At the center plane the pathlines illustrated are real,
while for the other planes the visualized flow shows the projec-
tions of the pathlines at the visualized plane. Again, we observe
an excellent agreement between the visualizations and the numer-
ical predictions.

For the range of flow rates studied, the flow is symmetric rela-
tive to the two center planes (y = 0 and z = 0) and to the two diag-
onal planes (y = ± z). To further document the complex flow
Fig. 9. Experimental and numerical projected pathlines of the Newtonian fluid
behavior in square–square expansions, in Fig. 10 we show a
three-dimensional view of some streamlines, showing the open
vortical structures predicted numerically with the refined mesh
(M80) for the Newtonian fluid at creeping flow conditions
(Re ? 0 and CR = 4). To simulate creeping flow conditions we ne-
glect the convective term in the momentum equation, but keep
the transient term ðq@u=@tÞ and use a pseudo-time marching algo-
rithm to achieve steady flow conditions. When steady-state is
achieved, the transient term vanishes, and we obtain exactly creep-
ing flow conditions (Re = 0).

Under creeping flow, the streamlines generated by the
Newtonian fluid flowing through a square–square expansion are
coincident with those documented previously for the flow
through square–square contractions [8,43,44] due to the revers-
ibility of inertialess flows. However, in the present configuration
the flow occurs in the opposite direction, causing the fluid that is
flowing near the center plane wall of the upstream channel to
pass through the expansion plane and enter the recirculation in
the center plane (plane EFGH in Fig. 10c). Once there, the fluid
rotates around the center of the recirculation and follows a heli-
cal trajectory toward the diagonal plane (ABCD), where it turns
now to the periphery and exits the recirculation moving toward
the exit of the downstream channel close to the diagonal plane
wall, as illustrated in Fig. 10c. The streamlines in the center
and diagonal planes are shown in Fig. 10a and b, respectively,
to better illustrate the dynamics of the secondary flow in the
symmetry planes.
flow at different planes of the 1:8 square–square expansion for Re = 13.9.



Fig. 10. Streamlines predicted numerically for the Newtonian fluid flow through the 1:4 square–square expansion under creeping flow conditions (Re ? 0). (a) Streamlines at
the center plane (EFGH); (b) streamlines at the diagonal plane (ABCD); (c) three-dimensional view of some streamlines. Note that in the center planes (a) the fluid enters the
recirculation while in the diagonal planes (b) the fluid exits the recirculation.
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Interestingly, when inertial effects are important, besides the
increase of the recirculation documented previously (cf. Figs. 4
and 5) we observe a reversal in the flow direction within the recir-
culation. This can be observed in the streamlines plotted in Fig. 11
at Re = 10 and CR = 4. In this case, the recirculating flow occurs
from the diagonal planes, where the fluid is sucked in (cf.
Fig. 11b), to the center planes where the fluid is ejected (cf.
Fig. 11a). Such a flow reversal was previously documented in
Fig. 11. Streamlines predicted numerically for the Newtonian fluid flow through the 1:4
streamlines at the diagonal plane (ABCD); (c) three-dimensional view of some streamline
central planes (a) the fluid exits the recirculation.
square–square contractions, but was attributed to elastic effects
[8,43,44]. The present results suggest that flow reversal in
square–square contractions or expansions is not a fingerprint of
elastic effects, but seems to occur concomitantly with vortex
enhancement, which is inertially-driven in expansion flows and
elasticity-driven in contraction flows.

In Fig. 12 we show pathline projections of the Boger and
shear-thinning fluid flows at different parallel planes of the 1:2.4
square–square expansion at Re = 10. (a) Streamlines at the center plane (EFGH); (b)
s. Note that in the diagonal planes (b) the fluid enters the recirculation while in the



Fig. 12. Projections of pathlines at different parallel planes for the Boger (a) and shear-thinning (b) fluid flow through the square–square expansion (ER = 2.4).
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square–square expansion and identical Deborah numbers,
illustrating the complex and highly three-dimensional flow
behavior particularly near the walls.
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Fig. 13. Experimental (symbols) and numerical (lines) axial velocity profiles at the
centerline for the Newtonian fluid flow at different Re: (a) ER = 2.4; (b) ER = 8.
5. Velocity field

5.1. Newtonian fluid

In order to highlight the inertial effects on the velocity field, in
Fig. 13 we show axial velocity profiles along the centerline for two
expansion ratios (ER = 2.4 and ER = 8), at different Reynolds num-
bers. The axial velocity profile predicted numerically for negligible
inertial flow conditions (creeping flow) is also shown for compar-
ison purposes. Moreover, we compare the experimental results
with numerical predictions for each value of Re.

In all cases, the dimensionless velocity profiles are plotted from
locations upstream (x < 0) to downstream (x > 0) of the expansion
plane. As can be seen, the dimensionless velocity gradient down-
stream of the expansion plane decreases when the Reynolds num-
ber increases. As inertia increases, entrance effects also become
more pronounced and the size of the recirculations, formed down-
stream of the expansion plane, also increases. For ER = 2.4, the nor-
malized velocity profile measured experimentally at low Re is
similar to that obtained numerically for creeping flow. For all axial
velocity profiles shown in Fig. 13, the experimental results are in
good agreement with those predicted numerically, for both
ER = 2.4 and 8, thus validating the PIV measurements.

To further attest the good agreement between experimental
and numerical results, in Fig. 14a we present a comparison be-
tween the middle plane pathlines obtained using three different
approaches: flow visualizations using streak photography; integra-
tion of the measured velocity field using PIV; numerical predic-
tions. The example shown corresponds to Newtonian fluid flow
through the 1:4 square–square expansion at similar Reynolds
numbers (Re � 10). In Fig. 14b we compare the normalized velocity
magnitude contour plots obtained from the PIV measurements and
from the numerical simulations. Again, the experimental results
are in excellent agreement with the numerical predictions.
5.2. Viscoelastic fluid

Fig. 15 shows normalized axial velocity profiles taken along the
centerline for the Boger fluid flowing through the 1:4 and 1:12



Fig. 14. Comparison between experimental and numerical results: (a) flow patterns (obtained experimentally from integration of the velocity field measured with PIV;
obtained from numerical calculations; obtained using long time exposure streak line photography); (b) normalized velocity magnitude contour plots.
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square expansions (Fig. 15a) and for the shear-thinning fluid
flowing through square–square expansions with expansion ratios
of 2.4 and 8 (Fig. 15b). Predictions of dimensionless velocity pro-
files for a Newtonian fluid flowing at creeping flow conditions
are also shown in Fig. 15 to highlight the influence of elasticity
on the dimensionless velocity profiles.

For a square channel, the theoretical maximum velocity or cen-
terline velocity is 2.096 times the average velocity for a constant
viscosity fluid (either Newtonian or a Boger fluid) [44]. Therefore,
for the Boger fluid, the axial velocity far upstream of the expansion
should be ux/U1 = 2.096 as observed for the computed profiles for
Newtonian and FENE-MCR fluids. In the limit De ? 0, obtained
experimentally for very low flow rates, the axial dimensionless
velocity profile approaches that of a Newtonian fluid under creep-
ing flow conditions. An increase in the flow rate (or De) leads to the
appearance of a local maximum of the axial velocity near
the expansion region, which is also predicted numerically using
the FENE-MCR model, although with some differences observed
due to the inability of this model to accurately reproduce the
complex behavior of the Boger fluid. For the Boger and the shear-
thinning fluids studied, at high De, a significant overshoot on the
axial velocity along the centerline is clearly visible with the maxi-
mum axial velocity reaching values well above the fully-developed
value, which means that the fluid experiences an acceleration as it
is approaching the expansion plane (converging streamlines) lead-
ing to a higher rate of decay of the velocity when it enters the
channel with larger cross-section. The same phenomenon was ob-
served experimentally by Rothstein and McKinley [45] for Boger
fluid flow through an axisymmetric contraction-expansion and
numerically by Oliveira [29] for a FENE-CR fluid and by Poole
et al. [23] for UCM and sPTT fluids flowing through planar expan-
sions, although to a smaller extent. Eventually, the centerline
velocity downstream of the expansion reaches the theoretical va-
lue corresponding to fully-developed flow conditions and therefore
good agreement between experiments and numerical simulations
is observed. However, as the flow rate is increased, fully-developed
flow is only achieved progressively farther away from the expan-
sion plane and the overshoot on the velocity profile exhibits a
higher magnitude, particularly for the shear-thinning fluid.

For the shear-thinning fluid, the ratio of the maximum velocity
achieved in the upstream channel to the average velocity, depends
on the flow rate, since the viscosity depends strongly on the shear
rate. Thus, in order to predict the value of the axial velocity for
fully-developed conditions, which was not measurable experimen-
tally, we performed numerical simulations using a generalized
Newtonian fluid (GNF) with a rheological behavior in steady shear
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flow similar to that found for the shear-thinning viscoelastic fluid
used. For this purpose, the rheological data (cf. Section 2.3) was fit-
ted using a Carreau-Yasuda model [46],

g ¼ gS þ
g0 � gS

½1þ ðK _cÞa�ð1�nÞ=a ð9Þ

where the parameters of the fitted model are: g0 = 1.65 Pa s,
gS = 0.03 Pa s, K = 10 s, n = 0.36 and a = 0.9. The numerical predic-
tions using this rheological model are also shown in Fig. 15b for
the shear-thinning fluid. As can be seen, the fully developed nor-
malized axial velocity depends on the flow rate and its value is
smaller than that for constant viscosity fluids. Moreover it is possi-
ble to further attest that the overshoot present on the axial velocity
profile is a consequence of the elastic effects, since for a GNF no
overshoot is predicted.

In Fig. 16 we present the profiles of the x- and y- velocity
components taken in the spanwise direction at different x-loca-
tions. Additionally, we also compare in Fig. 16(a1) the measured
velocity profiles with the predictions using the FENE-MCR model
with L2 = 100 (for the Boger fluid) and in Fig. 16(b1) with the GNF
fluid simulations (for the shear-thinning fluid). The predictions of
the FENE-MCR model are in good agreement with the experimen-
tal measurements for the axial locations illustrated in Fig. 16a.
However, in the vicinity of x=ð2H1Þ � �0:5 the predicted center-
line velocity is slightly higher than the experiments (cf.
Fig. 15a1).

From the velocity profiles taken at discrete x-positions it is pos-
sible to infer about the evolution of the velocity along the channel.
For the Boger fluid (cf. Fig. 16a), the velocity profile at location
x = �H1 approaches fully-developed flow conditions, since the
transverse velocity component is negligible and the maximum ax-
ial velocity on the centerline approaches the theoretical value
ux=U1 ¼ 2:096, valid for fully developed flow conditions of a con-
stant viscosity fluid. In the channel with a larger cross-section,
the x-component of the velocity decreases progressively while
the y-component experiences an increase near its entrance and
up to x � 0:5H1, gradually decreasing for locations farther down-
stream. For the shear-thinning fluid, the flow behavior is similar
to that observed for the Boger fluid, except for the shape of the
velocity profile. In this case, the profile becomes more like a plug
flow profile, especially upstream of the expansion, a typical behav-
ior of shear-thinning fluids under fully-developed flow conditions.
Good agreement with the fully developed flow velocity profile pre-
dicted with the GNF fluid is observed for the shear-thinning fluid,
as shown in Fig. 16 (b1) at the upstream location (x ¼ �H1). How-
ever, closer to the expansion plane, the comparison between the
experimental stream wise velocity profile and the GNF calculations
become less accurate, due to the influence of elastic effects which
are not captured in the GNF simulations.
5.3. Pressure drop

Pressure drop measurements for viscoelastic fluid flows
through expansions are scarce, particularly if the flow occurs in
channels with a 3D geometrical arrangement. The results obtained
in this study for the Boger fluid flow through square–square expan-
sions with different ER can be useful as benchmark data for valida-
tion of numerical results.
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Fig. 17 shows the pressure drop measured with the Boger fluid
(c.f. Section 2.2 for pressure ports locations) as a function of the
flow rate for ER = 4, 8 and 12. Since the pressure drop increases lin-
early with the flow rate for all ER studied, we also present a linear
fit to the experimental results. The predictions using the FENE-
MCR model are also included, and show a larger pressure drop than
the experimental measurements. This observation is not totally
unexpected since the FENE-MCR model predicts a constant shear
viscosity, while the Boger fluid used in the experimental work
exhibits some shear-thinning, although to a small degree. Ideally
a Boger fluid should have a constant shear viscosity, but in practice
real fluids exhibit some degree of shear thinning, which should be
minimized as much as possible. For the Boger fluid used in the
experiments, the average shear viscosity measured in steady shear
flow for the range of shear rates where accurate measurements are
obtained is approximately 0.45 Pa s, about 30% below the shear
viscosity of the FENE-MCR fluid used in the numerical simulations,
which was based on a 3-mode plus solvent fit to small oscillatory
shear data [8]. It is therefore not surprising that the predictions of
the FENE-MCR model are on average about 20% higher than the
experimental measurements. In Fig. 17 we also present the pres-
sure drop predicted for a Newtonian fluid with a shear viscosity
equal to the total shear viscosity of the FENE-MCR model used to
fit the rheology of the Boger fluid (g0 = 0.646 Pa s) and a Newtonian
fluid with a shear viscosity equal to the solvent contribution of the
shear viscosity of the FENE-MCR model (gS = 0.367 Pa s). As illus-
trated in Fig. 17, the relation between experimental and numerical
results is analogous for all expansion ratios studied and the exper-
imental data lies in-between the numerical predictions of the
Newtonian fluids. From these results we can also conclude that
there is no significant enhancement of pressure drop due to elastic
effects, since the difference between the FENE-MCR predictions
and the Newtonian fluid with a similar shear viscosity
(g = 0.646 Pa s) is small, in contrast with the results obtained with
the same fluid in 3D square–square contractions where a signifi-
cant increase of the entry pressure drop due to elastic effects
was found for high contraction ratios [8].
6. Conclusions

The three-dimensional flow of a Newtonian and two viscoelas-
tic fluids through square/square expansions with expansion ratios
of 2.4, 4, 8 and 12 was investigated experimental and numerically.
In addition to the characterization of the flow through square–
square expansions, this work also intends to provide useful data
for benchmarking in a complex 3D flow.

Three-dimensional numerical simulations of the Newtonian
and non-Newtonian fluid flow were performed using a finite vol-
ume method. The Newtonian fluid flow presents a Moffatt corner
vortex downstream of the expansion plane and the effect of inertia
on the flow behavior is similar for all expansion ratios studied:
increasing the Reynolds number leads to an increase of the vortex
length and intensity and a reversal in the flow direction inside the
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recirculation. The viscoelastic fluid flow behavior is also analogous
for all expansion ratios studied: a corner vortex is observed down-
stream of the expansion plane and increasing the Deborah number
leads, in general, to a decrease of the corner vortex length, which is
more marked for the shear-thinning fluid. A complex helicoidal
flow within the vortical structure is observed experimentally for
all fluids studied and confirmed by the numerical simulations.
The numerical results capture very well the flow characteristics
obtained experimentally for the whole range of conditions for
the Newtonian fluid. For the viscoelastic fluid flow the numerical
simulations predict a decrease of vortex activity at low Deborah
number flows, followed by a vortex enhancement at higher De, a
phenomenon not observed in the experiments. For the Boger fluid,
the pressure drop across the square–square expansion increases
linearly with the flow rate and does not reveal an enhancement
of the extra pressure drop due to elasticity.
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