Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Laser characteristics of a family of benzene-cored star-shaped oligofluorenes

Tsiminis, Georgios and Montgomery, Neil A. and Kanibolotsky, Alexander L. and Ruseckas, Arvydas and Perepichka, Igor F. and Skabara, Peter J. and Turnbull, Graham A. and Samuel, Ifor D. W. (2012) Laser characteristics of a family of benzene-cored star-shaped oligofluorenes. Semiconductor Science and Technology, 27 (9). ISSN 0268-1242

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A family of star-shaped conjugated oligofluorene molecules based around a central benzene core is studied with the aim of identifying how changes in molecular structure can affect the laser performance of organic materials. As the oligofluorene arm length increases the optical transitions are found to move to longer wavelength, there is an increase in photoluminescence quantum yield and a corresponding reduction in the excitation density for amplified spontaneous emission. Distributed-feedback lasers based on these materials are tunable across 402-462 nm with lasing thresholds as low as 1.1 kW cm(-2) and efficiencies as high as 6.6%. The laser performance is compared with that of family of star-shaped molecules with different core structure. This shows that a reduction in intermolecular interactions is very important to achieving high performance lasing in organic semiconductors.