Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Laser characteristics of a family of benzene-cored star-shaped oligofluorenes

Tsiminis, Georgios and Montgomery, Neil A. and Kanibolotsky, Alexander L. and Ruseckas, Arvydas and Perepichka, Igor F. and Skabara, Peter J. and Turnbull, Graham A. and Samuel, Ifor D. W. (2012) Laser characteristics of a family of benzene-cored star-shaped oligofluorenes. Semiconductor Science and Technology, 27 (9). ISSN 0268-1242

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A family of star-shaped conjugated oligofluorene molecules based around a central benzene core is studied with the aim of identifying how changes in molecular structure can affect the laser performance of organic materials. As the oligofluorene arm length increases the optical transitions are found to move to longer wavelength, there is an increase in photoluminescence quantum yield and a corresponding reduction in the excitation density for amplified spontaneous emission. Distributed-feedback lasers based on these materials are tunable across 402-462 nm with lasing thresholds as low as 1.1 kW cm(-2) and efficiencies as high as 6.6%. The laser performance is compared with that of family of star-shaped molecules with different core structure. This shows that a reduction in intermolecular interactions is very important to achieving high performance lasing in organic semiconductors.