Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction

Campo-Deaño, Laura and Galindo-Rosales, Francisco J and Pinho, F.T. and Alves, M.A. and Oliveira, Monica (2011) Flow of low viscosity Boger fluids through a microfluidic hyperbolic contraction. Journal of Non-Newtonian Fluid Mechanics, 166 (21-22). pp. 1286-1296. ISSN 0377-0257

[img]
Preview
PDF
Oliveira_M_Flow_of_low_viscosity_Boger_fluids_through_a_microfluidic_hyperbolic_contraction_Nov_2011.pdf - Final Published Version

Download (2MB) | Preview

Abstract

In this work we focus on the development of low viscosity Boger fluids and assess their elasticity analyzing the flow through a microfluidic hyperbolic contraction. Rheological tests in shear and extensional flows were carried out in order to evaluate the effect of the addition of a salt (NaCl) to dilute aqueous solutions of polyacrylamide at 400, 250, 125 and 50 ppm (w/w). The rheological data showed that when 1% (w/w) of NaCl was added, a significant decrease of the shear viscosity curve was observed, and a nearly constant shear viscosity was found for a wide range of shear rates, indicating Boger fluid behavior. The relaxation times, measured using a capillary break-up extensional rheometer (CaBER), decreased for lower polymer concentrations, and with the addition of NaCl. Visualizations of these Boger fluids flowing through a planar microfluidic geometry containing a hyperbolic contraction, which promotes a nearly uniform extension rate at the centerline of the geometry, was important to corroborate their degree of elasticity. Additionally, the quantification of the vortex growth upstream of the hyperbolic contraction was used with good accuracy and reproducibility to assess the relaxation time for the less concentrated Boger fluids, for which CaBER measurements are difficult to perform.