Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The Euler-Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model

Baduraliya, Chaminda and Mao, Xuerong (2012) The Euler-Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model. Computers and Mathematics with Applications, 64 (7). pp. 2209-2223. ISSN 0898-1221

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Stochastic differential equations (SDEs) have been used to model an asset price and its volatility in finance. Lewis (2000) [10] developed the mean-reverting-theta processes which can not only model the volatility but also the asset price. In this paper, we will consider the following mean-reverting-theta stochastic volatility model dV(t)=α2(μ2−V(t))dt+σ2V(t)βdw2(t). We will first develop a technique to prove the non-negativity of solutions to the model. We will then show that the EM numerical solutions will converge to the true solution in probability. We will also show that the EM solutions can be used to compute some financial quantities related to the SDE model including the option value, for example.