Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Stability of singular jump-linear systems with a large state space : a two-time-scale approach

Nguyen, Dung Tien and Mao, Xuerong and Yin, G. and Yuan, Chenggui (2012) Stability of singular jump-linear systems with a large state space : a two-time-scale approach. The Australian and New Zealand Industrial and Applied Mathematics Journal, 52 (4). pp. 372-390.

[img] PDF
1.Stability.pdf - Final Published Version

Download (707kB)

Abstract

This paper considers singular systems that involve both continuous dynamics and discrete events with the coefficients being modulated by a continuous-time Markov chain. The underlying systems have two distinct characteristics. First, the systems are singular, that is, characterized by a singular coefficient matrix. Second, the Markov chain of the modulating force has a large state space. We focus on stability of such hybrid singular systems. To carry out the analysis, we use a two-time-scale formulation, which is based on the rationale that, in a large-scale system, not all components or subsystems change at the same speed. To highlight the different rates of variation, we introduce a small parameter ε>0. Under suitable conditions, the system has a limit. We then use a perturbed Lyapunov function argument to show that if the limit system is stable then so is the original system in a suitable sense for ε small enough. This result presents a perspective on reduction of complexity from a stability point of view.