Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Flow of a blood analogue solution through microfabricated hyperbolic contractions

Sousa, P.C. and Pinho, I.S. and Pinho, F.T. and Oliveira, Monica and Alves, M.A. (2011) Flow of a blood analogue solution through microfabricated hyperbolic contractions. In: Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, 19 (1st). Springer London, London, Ch 15 pp 265-279. ISBN 978-94-007-0010-9

Oliveira_M_Pure_Flow_of_a_blood_analogue_solution_through_microfabricated_hyperbolic_contractions_2011.pdf - Preprint

Download (693kB) | Preview


The flow of a blood analogue solution past a microfabricated hyperbolic contraction followed by an abrupt expansion was investigated experimentally. The shape of the contraction was designed in order to impose a nearly constant strain rate to the fluid along the centerline of the microgeometry. The flow patterns of the blood analogue solution and of a Newtonian reference fluid (deionized water), captured using streak line imaging, are quite distinct and illustrate the complex behavior of the blood analogue solution flowing through the microgeometry. The flow of the blood analogue solution shows elastic-driven effects with vortical structures emerging upstream of the contraction, which are absent in Newtonian fluid flow. In both cases the flow also develops instabilities downstream of the expansion but these are inertia driven. Therefore, for the blood analogue solution at high flow rates the competing effects of inertia and elasticity lead to complex flow patterns and unstable flow develops.