Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Transporting functions across ornaments

Dagand, Pierre-Evariste and McBride, Conor (2012) Transporting functions across ornaments. In: ICFP '12 Proceedings of the 17th ACM SIGPLAN international conference on Functional programming. ACM, New York, NY, New York, pp. 104-113. ISBN 978-1-4503-1054-3

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Programming with dependent types is a blessing and a curse. It is a blessing to be able to bake invariants into the definition of datatypes: we can finally write correct-by-construction software. However, this extreme accuracy is also a curse: a datatype is the combination of a structuring medium together with a special purpose logic. These domain-specific logics hamper any effort of code reuse among similarly structured data. In this paper, we exorcise our datatypes by adapting the notion of ornament to our universe of inductive families. We then show how code reuse can be achieved by ornamenting functions. Using these functional ornaments, we capture the relationship between functions such as the addition of natural numbers and the concatenation of lists. With this knowledge, we demonstrate how the implementation of the former informs the implementation of the latter: the user can ask the definition of addition to be lifted to lists and she will only be asked the details necessary to carry on adding lists rather than numbers. Our presentation is formalised in a type theory with a universe of datatypes and all our constructions have been implemented as generic programs, requiring no extension to the type theory.