Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Transporting functions across ornaments

Dagand, Pierre-Evariste and McBride, Conor (2012) Transporting functions across ornaments. In: ICFP '12 Proceedings of the 17th ACM SIGPLAN international conference on Functional programming. ACM, New York, NY, New York, pp. 104-113. ISBN 978-1-4503-1054-3

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Programming with dependent types is a blessing and a curse. It is a blessing to be able to bake invariants into the definition of datatypes: we can finally write correct-by-construction software. However, this extreme accuracy is also a curse: a datatype is the combination of a structuring medium together with a special purpose logic. These domain-specific logics hamper any effort of code reuse among similarly structured data. In this paper, we exorcise our datatypes by adapting the notion of ornament to our universe of inductive families. We then show how code reuse can be achieved by ornamenting functions. Using these functional ornaments, we capture the relationship between functions such as the addition of natural numbers and the concatenation of lists. With this knowledge, we demonstrate how the implementation of the former informs the implementation of the latter: the user can ask the definition of addition to be lifted to lists and she will only be asked the details necessary to carry on adding lists rather than numbers. Our presentation is formalised in a type theory with a universe of datatypes and all our constructions have been implemented as generic programs, requiring no extension to the type theory.