Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Modelling the spread of HIV/AIDS amongst injecting drug users taking into account variable infectivity and loss of infectivity

Greenhalgh, David and Al-Fwzan, Wafa (2010) Modelling the spread of HIV/AIDS amongst injecting drug users taking into account variable infectivity and loss of infectivity. In: First Workshop on Dynamical Systems Applied to Biology and Natural Sciences, 2011-03-31.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We start off this paper with a brief introduction to modeling Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS) amongst sharing, injecting drug users (IDUs). Then we describe the mathematical model which we shall use which extends an existing model of the spread of HIV and AIDS amongst IDUs by incorporating loss of HIV infectivity over time. This is followed by the derivation of a key epidemiological parameter, the basic reproduction number $R_0$. Next we give some analytical equilibrium, local and global stability results. We show that if $R_0 \le 1$ then the disease will always die out. For $R_0 > 1$ there is the disease-free equilibrium (DFE) and a unique endemic equilibrium. The DFE is unstable. An approximation argument shows that we expect the endemic equilibrium to be locally stable. We next discuss a more realistic version of the model, relaxing the assumption that the number of addicts remains constant and obtain some results for this model. The subsequent section gives simulations for both models confirming that if $R_0 \le 1$ then the disease will die out and if $R_0 > 1$ then if it is initially present the disease will tend to the unique endemic equilibrium. The simulation results are compared with the original model with no loss of HIV infectivity. Next the implications of these results for control strategies are considered. A brief summary concludes the paper.