Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The finite-volume method in computational rheology

Afonso, A.M. and Oliveira, Monica and Oliveira, P.J. and Alves, M.A. and Pinho, F.T. (2012) The finite-volume method in computational rheology. In: Finite-Volume Methods - Powerful Means of Engineering Design. In-Tech Open Publishers, Ch 7, pp 141-170. ISBN 978-953-51-0445-2

[img]
Preview
PDF
Oliveira_MSN_Pure_The_finite_volume_method_in_computational_rheology_2012.pdf - Draft Version

Download (1MB) | Preview

Abstract

The finite volume method (FVM) is widely used in traditional computational fluid dynamics (CFD), and many commercial CFD codes are based on this technique which is typically less demanding in computational resources than finite element methods (FEM). However, for historical reasons, a large number of Computational Rheology codes are based on FEM. There is no clear reason why the FVM should not be as successful as finite element based techniques in Computational Rheology and its applications, such as polymer processing or, more recently, microfluidic systems using complex fluids. This chapter describes the major advances on this topic since its inception in the early 1990’s, and is organized as follows. In the next section, a review of the major contributions to computational rheology using finite volume techniques is carried out, followed by a detailed explanation of the methodology developed by the authors. This section includes recent developments and methodologies related to the description of the viscoelastic constitutive equations used to alleviate the high-Weissenberg number problem, such as the log-conformation formulation and the recent kernel-conformation technique. At the end, results of numerical calculations are presented for the well-known benchmark flow in a 4:1 planar contraction to ascertain the quality of the predictions by this method.