Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Statistical mechanics of two-dimensional tilings

Kaatz, F.H. and Estrada, Ernesto and Bultheel, A. and Sharrock, N. (2012) Statistical mechanics of two-dimensional tilings. Physica A: Statistical Mechanics and its Applications, 391 (10). pp. 2957-2963. ISSN 0378-4371

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Reduced dimensionality in two dimensions is a topic of current interest. We use model systems to investigate the statistical mechanics of ideal networks. The tilings have possible applications such as the 2D locations of pore sites in nanoporous arrays (quantum dots), in the 2D hexagonal structure of graphene, and as adsorbates on quasicrystalline crystal surfaces. We calculate the statistical mechanics of these networks, such as the partition function, free energy, entropy, and enthalpy. The plots of these functions versus the number of links in the finite networks result in power law regression. We also determine the degree distribution, which is a combination of power law and rational function behavior. In the large-scale limit, the degree of these 2D networks approaches 3, 4, and 6, in agreement with the degree of the regular tilings. In comparison, a Penrose tiling has a degree also equal to about 4.