Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Global convergence and local superconvergence of first-kind Volterra integral equation approximations

Brunner, Hermann and Davies, P.J. and Duncan, D.B. (2012) Global convergence and local superconvergence of first-kind Volterra integral equation approximations. IMA Journal of Numerical Analysis, 32 (3). pp. 1117-1146. ISSN 0272-4979

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present a comprehensive convergence analysis for discontinuous piecewise polynomial approximations of a first-kind Volterra integral equation with smooth convolution kernel, examining the attainable order of (super-) convergence in collocation (DC), quadrature discontinuous Galerkin (QDG) and full discontinuous Galerkin (DG) methods. We introduce new polynomial basis functions with properties that greatly simplify the convergence analysis for collocation methods. This also enables us to determine explicit formulae for the location of superconvergence points (i.e.\ discrete points at which the convergence order is one higher than the global bound) for \textbf{all} convergent collocation schemes. We show that a QDG method which is based on piecewise polynomials of degree $m$ and uses exactly $m+1$ quadrature points and nonzero quadrature weights is equivalent to a collocation scheme, and so its convergence properties are fully determined by the previous collocation analysis and they depend only on the quadrature point location (in particular, they are completely independent of the accuracy of the quadrature rule). We also give a complete analysis for QDG with more than $m+1$ quadrature points when the degree of precision (dop) is at least $2m+1$. The behaviour (but not the approximation) is the same as for a DG scheme when the dop is at least $2m+2$. Numerical test results confirm that the theoretical convergence rates are optimal.