Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy

Anderson, Magnus and McGuire, Kenny and Zante, Remi Christophe and Ion, William and Rosochowski, Andrzej and Brooks, Jeffery (2013) Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy. Journal of Materials Processing Technology, 213 (1). 111–119. ISSN 0924-0136

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The dies used in the extrusion of nickel based super alloys are subject to severe mechanical and thermal stresses, resulting in shortened life and high manufacturing costs. It is necessary to understand the dominant damage mode in order to guide improvements for increased tool life. The operation under examination consists of the hot extrusion of a nickel based superalloy using nitrided hot work tool steel, glassed workpieces and graphite lubrication. The investigation was conducted through a combination of metallurgical analysis, metrology and finite element analysis. Out of the damage modes observed under these conditions, the plastic deformation of the substrate was found to be the cause for tool failure. This paper discusses the relationship between plastic deformation of the substrate and the formation of scoring marks, which fail the die.